
The Concise TypeScript Book
Simone Poggiali

The Concise TypeScript Book
The Concise TypeScript Book provides a comprehensive and
succinct overview of TypeScript’s capabilities. It offers clear
explanations covering all aspects found in the latest version of the
language, from its powerful type system to advanced features.
Whether you’re a beginner or an experienced developer, this book is
an invaluable resource to enhance your understanding and
proficiency in TypeScript.

This book is completely Free and Open Source.

Translations

This book has been translated into several language versions,
including:

Chinese

Downloads

You can also download the Epub version here:

https://github.com/gibbok/typescript-book/tree/main/downloads

Table of Content

file:///C:/temp/calibre_wviikcn3/q8c93xus_pdf_out/EPUB/text/README-zh_CN.md
https://github.com/gibbok/typescript-book/tree/main/downloads

The Concise TypeScript Book
Translations
Downloads
Table of Content
Introduction
About the Author
TypeScript Introduction

What is TypeScript?
Why TypeScript?
TypeScript and JavaScript
TypeScript Code Generation
Modern JavaScript Now (Downleveling)

Getting Started With TypeScript
Installation
Configuration
TypeScript Configuration File tsconfig.json

target
lib
strict
module
moduleResolution
esModuleInterop
jsx
skipLibCheck
files
include
exclude

Migration to TypeScript Advice
Exploring the Type System

The TypeScript Language Service
Structural Typing
TypeScript Fundamental Comparison Rules
Types as Sets
Assign a type: Type Declarations and Type Assertions

Type Declaration
Type Assertion

Ambient Declarations
Property Checking and Excess Property Checking
Weak Types
Strict Object Literal Checking (Freshness)
Type Inference
More Advanced Inferences
Type Widening
Const

Const Modifier on Type Parameters
Const assertion

Explicit Type Annotation
Type Narrowing

Conditions
Throwing or returning
Discriminated Union
User-Defined Type Guards

Primitive Types
string
boolean
number
bigInt
Symbol
null and undefined
Array
any

Type Annotations
Optional Properties
Readonly Properties
Index Signatures
Extending Types
Literal Types
Literal Inference
strictNullChecks
Enums

Numeric enums
String enums

Constant enums
Reverse mapping
Ambient enums
Computed and constant members

Narrowing
typeof type guards
Truthiness narrowing
Equality narrowing
In Operator narrowing
instanceof narrowing

Assignments
Control Flow Analysis
Type Predicates
Discriminated Unions
The never Type
Exhaustiveness checking
Object Types
Tuple Type (Anonymous)
Named Tuple Type (Labeled)
Fixed Length Tuple
Union Type
Intersection Types
Type Indexing
Type from Value
Type from Func Return
Type from Module
Mapped Types
Mapped Type Modifiers
Conditional Types
Distributive Conditional Types
infer Type Inference in Conditional Types
Predefined Conditional Types
Template Union Types
Any type
Unknown type
Void type

Never type
Interface and Type

Common Syntax
Basic Types
Objects and Interfaces
Union and Intersection Types

Built-in Type Primitives
Common Built-in JS Objects
Overloads
Merging and Extension
Differences between Type and Interface
Class

Class Common Syntax
Constructor
Private and Protected Constructors
Access Modifiers
Get & Set
Auto-Accessors in Classes
this
Parameter Properties
Abstract Classes
With Generics
Decorators

Class Decorators
Property Decorator
Method Decorator
Getter and Setter Decorators
Decorator Metadata

Inheritance
Statics
Property initialization
Method overloading

Generics
Generic Type
Generic Classes
Generic Constraints

Generic contextual narrowing
Erased Structural Types
Namespacing
Symbols
Triple-Slash Directives
Type Manipulation

Creating Types from Types
Indexed Access Types
Utility Types

Awaited<T>
Partial<T>
Required<T>
Readonly<T>
Record<K, T>
Pick<T, K>
Omit<T, K>
Exclude<T, U>
Extract<T, U>
NonNullable<T>
Parameters<T>
ConstructorParameters<T>
ReturnType<T>
InstanceType<T>
ThisParameterType<T>
OmitThisParameter<T>
ThisType<T>
Uppercase<T>
Lowercase<T>
Capitalize<T>
Uncapitalize<T>

Others
Errors and Exception Handling
Mixin classes
Asynchronous Language Features
Iterators and Generators
TsDocs JSDoc Reference

@types
JSX
ES6 Modules
ES7 Exponentiation Operator
The for-await-of Statement
New.target
Dynamic Import Expressions
“tsc –watch”
Non-null Assertion Operator (Postfix !)
Defaulted declarations
Optional Chaining
Nullish coalescing operator (??)
Template Literal Types
Function overloading
Recursive Types
Recursive Conditional Types
ECMAScript Module Support in Node.js
Assertion Functions
Variadic Tuple Types
Boxed types
Covariance and Contravariance in TypeScript

Optional Variance Annotations for Type Parameters
Template String Pattern Index Signatures
The satisfies Operator
Type-Only Imports and Export
using declaration and Explicit Resource Management

await using declaration ## Introduction

Welcome to The Concise TypeScript Book! This guide equips you
with essential knowledge and practical skills for effective TypeScript
development. Discover key concepts and techniques to write clean,
robust code. Whether you’re a beginner or an experienced
developer, this book serves as both a comprehensive guide and a
handy reference for leveraging TypeScript’s power in your projects.

This book covers TypeScript 5.2.

About the Author

Simone Poggiali is an experienced Senior Front-end Developer with
a passion for writing professional-grade code since the 90s.
Throughout his international career, he has contributed to
numerous projects for a wide range of clients, from startups to large
organizations. Notable companies such as HelloFresh, Siemens, O2,
and Leroy Merlin have benefited from his expertise and dedication.

You can reach Simone Poggiali on the following platforms:

LinkedIn: https://www.linkedin.com/in/simone-poggiali
GitHub: https://github.com/gibbok
Twitter: https://twitter.com/gibbok_coding
Email: gibbok.coding📧gmail.com

TypeScript Introduction

What is TypeScript?

TypeScript is a strongly typed programming language that builds on
JavaScript. It was originally designed by Anders Hejlsberg in 2012
and is currently developed and maintained by Microsoft as an open
source project.

TypeScript compiles to JavaScript and can be executed in any
JavaScript engine (e.g., a browser or server Node.js).

TypeScript supports multiple programming paradigms such as
functional, generic, imperative, and object-oriented. TypeScript is
neither an interpreted nor a compiled language.

Why TypeScript?

https://www.linkedin.com/in/simone-poggiali
https://github.com/gibbok
https://twitter.com/gibbok_coding

TypeScript is a strongly typed language that helps prevent common
programming mistakes and avoid certain kinds of run-time errors
before the program is executed.

A strongly typed language allows the developer to specify various
program constraints and behaviors in the data type definitions,
facilitating the ability to verify the correctness of the software and
prevent defects. This is especially valuable in large-scale
applications.

Some of the benefits of TypeScript:

Static typing, optionally strongly typed
Type Inference
Access to ES6 and ES7 features
Cross-Platform and Cross-browser Compatibility
Tooling support with IntelliSense

TypeScript and JavaScript

TypeScript is written in .ts or .tsx files, while JavaScript files are
written in .js or .jsx.

Files with the extension .tsx or .jsx can contain JavaScript Syntax
Extension JSX, which is used in React for UI development.

TypeScript is a typed superset of JavaScript (ECMAScript 2015) in
terms of syntax. All JavaScript code is valid TypeScript code, but the
reverse is not always true.

For instance, consider a function in a JavaScript file with the .js
extension, such as the following:

const sum = (a, b) => a + b;

The function can be converted and used in TypeScript by changing
the file extension to .ts. However, if the same function is annotated
with TypeScript types, it cannot be executed in any JavaScript
engine without compilation. The following TypeScript code will
produce a syntax error if it is not compiled:

TypeScript was designed to detect possible exceptions that can occur
at runtime during compilation time by having the developer define
the intent with type annotations. In addition, TypeScript can also
catch issues if no type annotation is provided. For instance, the
following code snippet does not specify any TypeScript types:

In this case, TypeScript detects an error and reports:

Property 'y' does not exist on type '{ x: number; }'.

TypeScript’s type system is largely influenced by the runtime
behavior of JavaScript. For example, the addition operator (+),
which in JavaScript can either perform string concatenation or
numeric addition, is modeled in the same way in TypeScript:

The team behind TypeScript has made a deliberate decision to flag
unusual usage of JavaScript as errors. For instance, consider the
following valid JavaScript code:

However, TypeScript throws an error:

Operator '+' cannot be applied to types 'number' and 'boolean'.

const sum = (a: number, b: number): number => a + b;

const items = [{ x: 1 }, { x: 2 }];

const result = items.filter(item => item.y);

const result = '1' + 1; // Result is of type string

const result = 1 + true; // In JavaScript, the result is equal 2

This error occurs because TypeScript strictly enforces type
compatibility, and in this case, it identifies an invalid operation
between a number and a boolean.

TypeScript Code Generation

The TypeScript compiler has two main responsibilities: checking for
type errors and compiling to JavaScript. These two processes are
independent of each other. Types do not affect the execution of the
code in a JavaScript engine, as they are completely erased during
compilation. TypeScript can still output JavaScript even in the
presence of type errors. Here is an example of TypeScript code with
a type error:

However, it can still produce executable JavaScript output:

It is not possible to check TypeScript types at runtime. For example:

const add = (a: number, b: number): number => a + b;

const result = add('x', 'y'); // Argument of type 'string' is not as

'use strict';

const add = (a, b) => a + b;

const result = add('x', 'y'); // xy

interface Animal {

 name: string;

}

interface Dog extends Animal {

 bark: () => void;

}

interface Cat extends Animal {

 meow: () => void;

}

const makeNoise = (animal: Animal) => {

 if (animal instanceof Dog) {

 // 'Dog' only refers to a type, but is being used as a value

 // ...

 }

};

As the types are erased after compilation, there is no way to run this
code in JavaScript. To recognize types at runtime, we need to use
another mechanism. TypeScript provides several options, with a
common one being “tagged union”. For example:

The property “kind” is a value that can be used at runtime to
distinguish between objects in JavaScript.

It is also possible for a value at runtime to have a type different
from the one declared in the type declaration. For instance, if the
developer has misinterpreted an API type and annotated it
incorrectly.

TypeScript is a superset of JavaScript, so the “class” keyword can be
used as a type and value at runtime.

};

interface Dog {

 kind: 'dog'; // Tagged union

 bark: () => void;

}

interface Cat {

 kind: 'cat'; // Tagged union

 meow: () => void;

}

type Animal = Dog | Cat;

const makeNoise = (animal: Animal) => {

 if (animal.kind === 'dog') {

 animal.bark();

 } else {

 animal.meow();

 }

};

const dog: Dog = {

 kind: 'dog',

 bark: () => console.log('bark'),

};

makeNoise(dog);

In JavaScript, a “class” has a “prototype” property, and the
“instanceof” operator can be used to test if the prototype property of
a constructor appears anywhere in the prototype chain of an object.

TypeScript has no effect on runtime performance, as all types will
be erased. However, TypeScript does introduce some build time
overhead.

Modern JavaScript Now (Downleveling)

class Animal {

 constructor(public name: string) {}

}

class Dog extends Animal {

 constructor(

 public name: string,

 public bark: () => void

) {

 super(name);

 }

}

class Cat extends Animal {

 constructor(

 public name: string,

 public meow: () => void

) {

 super(name);

 }

}

type Mammal = Dog | Cat;

const makeNoise = (mammal: Mammal) => {

 if (mammal instanceof Dog) {

 mammal.bark();

 } else {

 mammal.meow();

 }

};

const dog = new Dog('Fido', () => console.log('bark'));

makeNoise(dog);

TypeScript can compile code to any released version of JavaScript
since ECMAScript 3 (1999). This means that TypeScript can
transpile code from the latest JavaScript features to older versions,
a process known as Downleveling. This allows the usage of modern
JavaScript while maintaining maximum compatibility with older
runtime environments.

It’s important to note that during transpilation to an older version
of JavaScript, TypeScript may generate code that could incur a
performance overhead compared to native implementations.

Here are some of the modern JavaScript features that can be used in
TypeScript:

ECMAScript modules instead of AMD-style “define” callbacks or
CommonJS “require” statements.
Classes instead of prototypes.
Variables declaration using “let” or “const” instead of “var”.
“for-of” loop or “.forEach” instead of the traditional “for” loop.
Arrow functions instead of function expressions.
Destructuring assignment.
Shorthand property/method names and computed property
names.
Default function parameters.

By leveraging these modern JavaScript features, developers can
write more expressive and concise code in TypeScript.

Getting Started With TypeScript

Installation

Visual Studio Code provides excellent support for the TypeScript
language but does not include the TypeScript compiler. To install

the TypeScript compiler, you can use a package manager like npm or
yarn:

npm install typescript --save-dev

or

yarn add typescript --dev

Make sure to commit the generated lockfile to ensure that every
team member uses the same version of TypeScript.

To run the TypeScript compiler, you can use the following
commands

npx tsc

or

yarn tsc

It is recommended to install TypeScript project-wise rather than
globally, as it provides a more predictable build process. However,
for one-off occasions, you can use the following command:

npx tsc

or installing it globally:

npm install -g typescript

If you are using Microsoft Visual Studio, you can obtain TypeScript
as a package in NuGet for your MSBuild projects. In the NuGet
Package Manager Console, run the following command:

Install-Package Microsoft.TypeScript.MSBuild

During the TypeScript installation, two executables are installed:
“tsc” as the TypeScript compiler and “tsserver” as the TypeScript

standalone server. The standalone server contains the compiler and
language services that can be utilized by editors and IDEs to provide
intelligent code completion.

Additionally, there are several TypeScript-compatible transpilers
available, such as Babel (via a plugin) or swc. These transpilers can
be used to convert TypeScript code into other target languages or
versions.

Configuration

TypeScript can be configured using the tsc CLI options or by
utilizing a dedicated configuration file called tsconfig.json placed in
the root of the project.

To generate a tsconfig.json file prepopulated with recommended
settings, you can use the following command:

tsc --init

When executing the tsc command locally, TypeScript will compile
the code using the configuration specified in the nearest
tsconfig.json file.

Here are some examples of CLI commands that run with the default
settings:

tsc main.ts // Compile a specific file (main.ts) to JavaScript

tsc src/*.ts // Compile any .ts files under the 'src' folder to

JavaScript

tsc app.ts util.ts --outfile index.js // Compile two TypeScript

files (app.ts and util.ts) into a single JavaScript file (index.js)

TypeScript Configuration File
tsconfig.json

A tsconfig.json file is used to configure the TypeScript Compiler
(tsc). Usually, it is added to the root of the project, together with the
package.json file.

Notes:

tsconfig.json accepts comments even if it is in json format.
It is advisable to use this configuration file instead of the
command-line options.

At the following link you can find the complete documentation and
its schema: https://www.typescriptlang.org/tsconfig
http://json.schemastore.org/tsconfig

The following represents a list of the common and useful
configurations:

target

The “target” property is used to specify which version of JavaScript
ECMAScript version your TypeScript should emit/compile into. For
modern browsers ES6 is a good option, for older browsers, ES5 is
recommended.

lib

The “lib” property is used to specify which library files to include at
compilation time. TypeScript automatically includes APIs for
features specified in the “target” property, but it is possible to omit
or pick specific libraries for particular needs. For instance, if you are
working on a server project, you could exclude the “DOM” library,
which is useful only in a browser environment.

strict

https://www.typescriptlang.org/tsconfig
http://json.schemastore.org/tsconfig

The “strict” property enables stronger guarantees and enhances type
safety. It is advisable to always include this property in your
project’s tsconfig.json file. Enabling the “strict” property allows
TypeScript to:

Emit code using “use strict” for each source file.
Consider “null” and “undefined” in the type checking process.
Disable the usage of the “any” type when no type annotations
are present.
Raise an error on the usage of the “this” expression, which
would otherwise imply the “any” type.

module

The “module” property sets the module system supported for the
compiled program. During runtime, a module loader is used to
locate and execute dependencies based on the specified module
system.

The most common module loaders used in JavaScript are Node.js
CommonJS for server-side applications and RequireJS for AMD
modules in browser-based web applications. TypeScript can emit
code for various module systems, including UMD, System, ESNext,
ES2015/ES6, and ES2020.

Note: The module system should be chosen based on the target
environment and the module loading mechanism available in that
environment.

moduleResolution

The “moduleResolution” property specifies the module resolution
strategy. Use “node” for modern TypeScript code, the “classic”
strategy is used only for old versions of TypeScript (before 1.6).

esModuleInterop

The “esModuleInterop” property allows import default from
CommonJS modules that did not export using the “default”
property, this property provides a shim to ensure compatibility in
the emitted JavaScript. After enabling this option we can use import
MyLibrary from "my-library" instead of import * as MyLibrary from
"my-library".

jsx

The “jsx” property applies only to .tsx files used in ReactJS and
controls how JSX constructs are compiled into JavaScript. A
common option is “preserve” which will compile to a .jsx file
keeping unchanged the JSX so it can be passed to different tools like
Babel for further transformations.

skipLibCheck

The “skipLibCheck’’ property will prevent TypeScript from type-
checking the entire imported third-party packages. This property
will reduce the compile time of a project. TypeScript will still check
your code against the type definitions provided by these packages.

files

The “files” property indicates to the compiler a list of files that must
always be included in the program.

include

The “include” property indicates to the compiler a list of files that
we would like to include. This property allows glob-like patterns,
such as “*” for any subdirectory, ”” for any file name, and “?” for
optional characters.

exclude

The “exclude” property indicates to the compiler a list of files that
should not be included in the compilation. This can include files
such as “node_modules” or test files. Note: tsconfig.json allows
comments.

Migration to TypeScript Advice

For large projects, it is recommended to adopt a gradual transition
where TypeScript and JavaScript code will initially coexist. Only
small projects can be migrated to TypeScript in one go.

The first step of this transition is to introduce TypeScript into the
build chain process. This can be done by using the “allowJs”
compiler option, which permits .ts and .tsx files to coexist with
existing JavaScript files. As TypeScript will fall back to a type of
“any” for a variable when it cannot infer the type from JavaScript
files, it is recommended to disable “noImplicitAny” in your compiler
options at the beginning of the migration.

The second step is to ensure that your JavaScript tests work
alongside TypeScript files so that you can run tests as you convert
each module. If you are using Jest, consider using ts-jest, which
allows you to test TypeScript projects with Jest.

The third step is to include type declarations for third-party libraries
in your project. These declarations can be found either bundled or
on DefinitelyTyped. You can search for them using
https://www.typescriptlang.org/dt/search and install them using:

npm install --save-dev @types/package-name or yarn add --dev

@types/package-name.

The fourth step is to migrate module by module with a bottom-up
approach, following your Dependency Graph starting with the
leaves. The idea is to start converting Modules that do not depend

https://www.typescriptlang.org/dt/search

on other Modules. To visualize the dependency graphs, you can use
the “madge” tool.

Good candidate modules for these initial conversions are utility
functions and code related to external APIs or specifications. It is
possible to automatically generate TypeScript type definitions from
Swagger contracts, GraphQL or JSON schemas to be included in
your project.

When there are no specifications or official schemas available, you
can generate types from raw data, such as JSON returned by a
server. However, it is recommended to generate types from
specifications instead of data to avoid missing edge cases.

During the migration, refrain from code refactoring and focus only
on adding types to your modules.

The fifth step is to enable “noImplicitAny,” which will enforce that
all types are known and defined, providing a better TypeScript
experience for your project.

During the migration, you can use the @ts-check directive, which
enables TypeScript type checking in a JavaScript file. This directive
provides a loose version of type checking and can be initially used to
identify issues in JavaScript files. When @ts-check is included in a
file, TypeScript will try to deduce definitions using JSDoc-style
comments. However, consider using JSDoc annotations only at a
very early stage of the migration.

Consider keeping the default value of noEmitOnError in your
tsconfig.json as false. This will allow you to output JavaScript
source code even if errors are reported.

Exploring the Type System

The TypeScript Language Service

The TypeScript Language Service, also known as tsserver, offers
various features such as error reporting, diagnostics, compile-on-
save, renaming, go to definition, completion lists, signature help,
and more. It is primarily used by integrated development
environments (IDEs) to provide IntelliSense support. It seamlessly
integrates with Visual Studio Code and is utilized by tools like
Conquer of Completion (Coc).

Developers can leverage a dedicated API and create their own
custom language service plugins to enhance the TypeScript editing
experience. This can be particularly useful for implementing special
linting features or enabling auto-completion for a custom
templating language.

An example of a real-world custom plugin is “typescript-styled-
plugin”, which provides syntax error reporting and IntelliSense
support for CSS properties in styled components.

For more information and quick start guides, you can refer to the
official TypeScript Wiki on GitHub:
https://github.com/microsoft/TypeScript/wiki/

Structural Typing

TypeScript is based on a structural type system. This means that the
compatibility and equivalence of types are determined by the type’s
actual structure or definition, rather than its name or place of
declaration, as in nominative type systems like C# or C.

TypeScript’s structural type system was designed based on how
JavaScript’s dynamic duck typing system works during runtime.

https://github.com/microsoft/TypeScript/wiki/

The following example is valid TypeScript code. As you can observe,
“X” and “Y” have the same member “a,” even though they have
different declaration names. The types are determined by their
structures, and in this case, since the structures are the same, they
are compatible and valid.

TypeScript Fundamental Comparison
Rules

The TypeScript comparison process is recursive and executed on
types nested at any level.

A type “X” is compatible with “Y” if “Y” has at least the same
members as “X”.

Function parameters are compared by types, not by their names:

type X = {

 a: string;

};

type Y = {

 a: string;

};

const x: X = { a: 'a' };

const y: Y = x; // Valid

type X = {

 a: string;

};

const y = { a: 'A', b: 'B' }; // Valid, as it has at least the same

const r: X = y;

type X = (a: number) => void;

type Y = (a: number) => void;

let x: X = (j: number) => undefined;

let y: Y = (k: number) => undefined;

Function return types must be the same:

The return type of a source function must be a subtype of the return
type of a target function:

Discarding function parameters is allowed, as it is a common
practice in JavaScript, for instance using “Array.prototype.map()”:

Therefore, the following type declarations are completely valid:

Any additional optional parameters of the source type are valid:

y = x; // Valid

x = y; // Valid

type X = (a: number) => undefined;

type Y = (a: number) => number;

let x: X = (a: number) => undefined;

let y: Y = (a: number) => 1;

y = x; // Invalid

x = y; // Invalid

let x = () => ({ a: 'A' });

let y = () => ({ a: 'A', b: 'B' });

x = y; // Valid

y = x; // Invalid member b is missing

[1, 2, 3].map((element, _index, _array) => element + 'x');

type X = (a: number) => undefined;

type Y = (a: number, b: number) => undefined;

let x: X = (a: number) => undefined;

let y: Y = (a: number) => undefined; // Missing b parameter

y = x; // Valid

type X = (a: number, b?: number, c?: number) => undefined;

type Y = (a: number) => undefined;

let x: X = a => undefined;

let y: Y = a => undefined;

y = x; // Valid

x = y; //Valid

Any optional parameters of the target type without corresponding
parameters in the source type are valid and not an error:

The rest parameter is treated as an infinite series of optional
parameters:

Functions with overloads are valid if the overload signature is
compatible with its implementation signature:

Function parameter comparison succeeds if the source and target
parameters are assignable to supertypes or subtypes (bivariance).

type X = (a: number) => undefined;

type Y = (a: number, b?: number) => undefined;

let x: X = a => undefined;

let y: Y = a => undefined;

y = x; // Valid

x = y; // Valid

type X = (a: number, ...rest: number[]) => undefined;

let x: X = a => undefined; //valid

function x(a: string): void;

function x(a: string, b: number): void;

function x(a: string, b?: number): void {

 console.log(a, b);

}

x('a'); // Valid

x('a', 1); // Valid

function y(a: string): void; // Invalid, not compatible with implem

function y(a: string, b: number): void;

function y(a: string, b: number): void {

 console.log(a, b);

}

y('a');

y('a', 1);

// Supertype

class X {

 a: string;

Enums are comparable and valid with numbers and vice versa, but
comparing Enum values from different Enum types is invalid.

Instances of a class are subject to a compatibility check for their
private and protected members:

 constructor(value: string) {

 this.a = value;

 }

}

// Subtype

class Y extends X {}

// Subtype

class Z extends X {}

type GetA = (x: X) => string;

const getA: GetA = x => x.a;

// Bivariance does accept supertypes

console.log(getA(new X('x'))); // Valid

console.log(getA(new Y('Y'))); // Valid

console.log(getA(new Z('z'))); // Valid

enum X {

 A,

 B,

}

enum Y {

 A,

 B,

 C,

}

const xa: number = X.A; // Valid

const ya: Y = 0; // Valid

X.A === Y.A; // Invalid

class X {

 public a: string;

 constructor(value: string) {

 this.a = value;

 }

}

The comparison check does not take into consideration the different
inheritance hierarchy, for instance:

Generics are compared using their structures based on the resulting
type after applying the generic parameter, only the final result is
compared as a non-generic type.

class Y {

 private a: string;

 constructor(value: string) {

 this.a = value;

 }

}

let x: X = new Y('y'); // Invalid

class X {

 public a: string;

 constructor(value: string) {

 this.a = value;

 }

}

class Y extends X {

 public a: string;

 constructor(value: string) {

 super(value);

 this.a = value;

 }

}

class Z {

 public a: string;

 constructor(value: string) {

 this.a = value;

 }

}

let x: X = new X('x');

let y: Y = new Y('y');

let z: Z = new Z('z');

x === y; // Valid

x === z; // Valid even if z is from a different inheritance hierarch

interface X<T> {

 a: T;

When generics do not have their type argument specified, all the
unspecified arguments are treated as types with “any”:

Remember:

;

}

let x: X<number> = { a: 1 };

let y: X<string> = { a: 'a' };

x === y; // Invalid as the type argument is used in the final struct

interface X<T> {}

const x: X<number> = 1;

const y: X<string> = 'a';

x === y; // Valid as the type argument is not used in the final stru

type X = <T>(x: T) => T;

type Y = <K>(y: K) => K;

let x: X = x => x;

let y: Y = y => y;

x = y; // Valid

let a: number = 1;

let b: number = 2;

a = b; // Valid, everything is assignable to itself

let c: any;

c = 1; // Valid, all types are assignable to any

let d: unknown;

d = 1; // Valid, all types are assignable to unknown

let e: unknown;

let e1: unknown = e; // Valid, unknown is only assignable to itself

let e2: any = e; // Valid

let e3: number = e; // Invalid

let f: never;

f = 1; // Invalid, nothing is assignable to never

let g: void;

let g1: any;

1 // I lid id i t i bl t f thi t

Please note that when “strictNullChecks” is enabled, “null” and
“undefined” are treated similarly to “void”; otherwise, they are
similar to “never”.

Types as Sets

In TypeScript, a type is a set of possible values. This set is also
referred to as the domain of the type. Each value of a type can be
viewed as an element in a set. A type establishes the constraints that
every element in the set must satisfy to be considered a member of
that set. The primary task of TypeScript is to check and verify
whether one set is a subset of another.

TypeScript supports various types of sets:

Set term TypeScript Notes
Empty
set

never “never” contains anything apart itself

Single
element
set

undefined /
null / literal
type

Finite set boolean /
union

Infinite
set

string /
number /
object

Universal
set

any /
unknown

Every element is a member of “any”
and every set is a subset of it /
“unknown” is a type-safe counterpart
of “any”

g = 1; // Invalid, void is not assignable to or from anything expect

g = g1; // Valid

Here few examples:

TypeScript Set term Example
never ∅ (empty set) const x: never = ‘x’; // Error: Type

‘string’ is not assignable to type
‘never’

Literal type Single
element set

type X = ‘X’;

type Y = 7;

Value
assignable
to T

Value ∈ T
(member of)

type XY = ‘X’ | ‘Y’;

const x: XY = ‘X’;

T1
assignable
to T2

T1 ⊆ T2
(subset of)

type XY = ‘X’ | ‘Y’;

const x: XY = ‘X’;
const j: XY = ‘J’; // Type ‘“J”’ is not
assignable to type ‘XY’.

T1 extends
T2

T1 ⊆ T2
(subset of)

type X = ‘X’ extends string ? true :
false;

T1 | T2 T1 ∪ T2
(union)

type XY = ‘X’ | ‘Y’;

type JK = 1 | 2;

T1 & T2 T1 ∩ T2
(intersection)

type X = { a: string }

type Y = { b: string }
type XY = X & Y
const x: XY = { a: ‘a’, b: ‘b’ }

TypeScript Set term Example
unknown Universal set const x: unknown = 1

An union, (T1 | T2) creates a wider set (both):

An intersection, (T1 & T2) create a narrower set (only shared):

The extends keyword could be considered as a “subset of” in this
context. It sets a constraint for a type. The extends used with a
generic, take the generic as an infinite set and it will constrain it to a
more specific type. Please note that extends has nothing to do with
hierarchy in a OOP sense (there is no this concept in TypeScript).
TypeScript works with sets and does not have a strict hierarchy,
infact, as in the example below, two types could overlap without
either being a subtype of the other type (TypeScript considers the
structure, shape of the objects).

type X = {

 a: string;

};

type Y = {

 b: string;

};

type XY = X | Y;

const r: XY = { a: 'a', b: 'x' }; // Valid

type X = {

 a: string;

};

type Y = {

 a: string;

 b: string;

};

type XY = X & Y;

const r: XY = { a: 'a' }; // Invalid

const j: XY = { a: 'a', b: 'b' }; // Valid

interface X {

 a: string;

}

Assign a type: Type Declarations and Type
Assertions

A type can be assigned in different ways in TypeScript:

Type Declaration

In the following example, we use x: X (“: Type”) to declare a type for
the variable x.

interface Y extends X {

 b: string;

}

interface Z extends Y {

 c: string;

}

const z: Z = { a: 'a', b: 'b', c: 'c' };

interface X1 {

 a: string;

}

interface Y1 {

 a: string;

 b: string;

}

interface Z1 {

 a: string;

 b: string;

 c: string;

}

const z1: Z1 = { a: 'a', b: 'b', c: 'c' };

const r: Z1 = z; // Valid

type X = {

 a: string;

};

// Type declaration

const x: X = {

If the variable is not in the specified format, TypeScript will report
an error. For instance:

Type Assertion

It is possible to add an assertion by using the as keyword. This tells
the compiler that the developer has more information about a type
and silences any errors that may occur.

For example:

In the above example, the object x is asserted to have the type X
using the as keyword. This informs the TypeScript compiler that the
object conforms to the specified type, even though it has an
additional property b not present in the type definition.

Type assertions are useful in situations where a more specific type
needs to be specified, especially when working with the DOM. For
instance:

 a: 'a',

};

type X = {

 a: string;

};

const x: X = {

 a: 'a',

 b: 'b', // Error: Object literal may only specify known properti

};

type X = {

 a: string;

};

const x = {

 a: 'a',

 b: 'b',

} as X;

Here, the type assertion as HTMLInputElement is used to tell
TypeScript that the result of getElementById should be treated as
an HTMLInputElement. Type assertions can also be used to remap
keys, as shown in the example below with template literals:

In this example, the type J<Type> uses a mapped type with a
template literal to remap the keys of Type. It creates new properties
with a “prefix_” added to each key, and their corresponding values
are functions returning the original property values.

It is worth noting that when using a type assertion, TypeScript will
not execute excess property checking. Therefore, it is generally
preferable to use a Type Declaration when the structure of the
object is known in advance.

Ambient Declarations

Ambient declarations are files that describe types for JavaScript
code, they have a file name format as .d.ts.. They are usually
imported and used to annotate existing JavaScript libraries or to add
types to existing JS files in your project.

Many common libraries types can be found at:
https://github.com/DefinitelyTyped/DefinitelyTyped/

and can be installed using:

const myInput = document.getElementById('my_input') as HTMLInputEle

type J<Type> = {

 [Property in keyof Type as `prefix_${string &

 Property}`]: () => Type[Property];

};

type X = {

 a: string;

 b: number;

};

type Y = J<X>;

https://github.com/DefinitelyTyped/DefinitelyTyped/

npm install --save-dev @types/library-name

For your defined Ambient Declarations, you can import using the
“triple-slash” reference:

You can use Ambient Declarations even within JavaScript files
using // @ts-check.

Property Checking and Excess Property
Checking

TypeScript is based on a structural type system but excess property
checking is a property of TypeScript which allows it to check
whether an object has the exact properties specified in the type.

Excess Property Checking is performed when assigning object
literals to variables or when passing them as arguments to the
function’s excess property, for instance.

Weak Types

A type is considered weak when it contains nothing but a set of all-
optional properties:

/// <reference path="./library-types.d.ts" />

type X = {

 a: string;

};

const y = { a: 'a', b: 'b' };

const x: X = y; // Valid because structural typing

const w: X = { a: 'a', b: 'b' }; // Invalid because excess property

type X = {

 a?: string;

TypeScript considers an error to assign anything to a weak type
when there is no overlap, for instance, the following throws an
error:

Although not recommended, if needed, it is possible to bypass this
check by using type assertion:

Or by adding unknown to the index signature to the weak type:

Strict Object Literal Checking (Freshness)

 b?: string;

};

type Options = {

 a?: string;

 b?: string;

};

const fn = (options: Options) => undefined;

fn({ c: 'c' }); // Invalid

type Options = {

 a?: string;

 b?: string;

};

const fn = (options: Options) => undefined;

fn({ c: 'c' } as Options); // Valid

type Options = {

 [prop: string]: unknown;

 a?: string;

 b?: string;

};

const fn = (options: Options) => undefined;

fn({ c: 'c' }); // Valid

Strict object literal checking, sometimes referred to as “freshness”,
is a feature in TypeScript that helps catch excess or misspelled
properties that would otherwise go unnoticed in normal structural
type checks.

When creating an object literal, the TypeScript compiler considers it
“fresh.” If the object literal is assigned to a variable or passed as a
parameter, TypeScript will throw an error if the object literal
specifies properties that do not exist in the target type.

However, “freshness” disappears when an object literal is widened
or a type assertion is used.

Here are some examples to illustrate:

Type Inference

TypeScript can infer types when no annotation is provided during:

Variable initialization.

type X = { a: string };

type Y = { a: string; b: string };

let x: X;

x = { a: 'a', b: 'b' }; // Freshness check: Invalid assignment

var y: Y;

y = { a: 'a', bx: 'bx' }; // Freshness check: Invalid assignment

const fn = (x: X) => console.log(x.a);

fn(x);

fn(y); // Widening: No errors, structurally type compatible

fn({ a: 'a', bx: 'b' }); // Freshness check: Invalid argument

let x: { a: string } = { a: 'a' };

let y: { a: string; b: string } = { a: 'a', b: '' };

x = y; // Widening: No Freshness check

Member initialization.
Setting defaults for parameters.
Function return type.

For example:

The TypeScript compiler analyzes the value or expression and
determines its type based on the available information.

More Advanced Inferences

When multiple expressions are used in type inference, TypeScript
looks for the “best common types.” For instance:

If the compiler cannot find the best common types, it returns a
union type. For example:

TypeScript utilizes “contextual typing” based on the variable’s
location to infer types. In the following example, the compiler
knows that e is of type MouseEvent because of the click event type
defined in the lib.d.ts file, which contains ambient declarations for
various common JavaScript constructs and the DOM:

Type Widening

let x = 'x'; // The type inferred is string

let x = [1, 'x', 1, null]; // The type inferred is: (string | numbe

let x = [new RegExp('x'), new Date()]; // Type inferred is: (RegExp

window.addEventListener('click', function (e) {}); // The inferred

Type widening is the process in which TypeScript assigns a type to a
variable initialized when no type annotation was provided. It allows
narrow to wider types but not vice versa. In the following example:

TypeScript assigns string to x based on the single value provided
during initialization (x), this is an example of widening.

TypeScript provides ways to have control of the widening process,
for instance using “const”.

Const

Using the const keyword when declaring a variable results in a
narrower type inference in TypeScript.

For example:

By using const to declare the variable x, its type is narrowed to the
specific literal value ‘x’. Since the type of x is narrowed, it can be
assigned to the variable y without any error. The reason the type can
be inferred is because const variables cannot be reassigned, so their
type can be narrowed down to a specific literal type, in this case, the
literal type ‘x’.

Const Modifier on Type Parameters

From version 5.0 of TypeScript, it is possible to specify the const
attribute on a generic type parameter. This allows for inferring the

let x = 'x'; // TypeScript infers as string, a wide type

let y: 'y' | 'x' = 'y'; // y types is a union of literal types

y = x; // Invalid Type 'string' is not assignable to type '"x" | "y"

const x = 'x'; // TypeScript infers the type of x as 'x', a narrower

let y: 'y' | 'x' = 'y';

y = x; // Valid: The type of x is inferred as 'x'

most precise type possible. Let’s see an example without using
const:

As you can see, the properties a and b are inferred with a type of
string .

Now, let’s see the difference with the const version:

Now we can see that the properties a and b are inferred as const, so a
and b are treated as string literals rather than just string types.

Const assertion

This feature allows you to declare a variable with a more precise
literal type based on its initialization value, signifying to the
compiler that the value should be treated as an immutable literal.
Here are a few examples:

On a single property:

On an entire object:

function identity<T>(value: T) {

 // No const here

 return value;

}

const values = identity({ a: 'a', b: 'b' }); // Type infered is: { a

function identity<const T>(value: T) {

 // Using const modifier on type parameters

 return value;

}

const values = identity({ a: 'a', b: 'b' }); // Type infered is: { a

const v = {

 x: 3 as const,

};

v.x = 3;

This can be particularly useful when defining the type for a tuple:

Explicit Type Annotation

We can be specific and pass a type, in the following example
property x is of type number:

We can make the type annotation more specific by using a union of
literal types:

Type Narrowing

Type Narrowing is the process in TypeScript where a general type is
narrowed down to a more specific type. This occurs when TypeScript
analyzes the code and determines that certain conditions or
operations can refine the type information.

Narrowing types can occur in different ways, including:

const v = {

 x: 1,

 y: 2,

} as const;

const x = [1, 2, 3]; // number[]

const y = [1, 2, 3] as const; // Tuple of readonly [1, 2, 3]

const v = {

 x: 1, // Inferred type: number (widening)

};

v.x = 3; // Valid

const v: { x: 1 | 2 | 3 } = {

 x: 1, // x is now a union of literal types: 1 | 2 | 3

};

v.x = 3; // Valid

v.x = 100; // Invalid

Conditions

By using conditional statements, such as if or switch, TypeScript can
narrow down the type based on the outcome of the condition. For
example:

Throwing or returning

Throwing an error or returning early from a branch can be used to
help TypeScript narrow down a type. For example:

Other ways to narrow down types in TypeScript include:

instanceof operator: Used to check if an object is an instance of a
specific class.
in operator: Used to check if a property exists in an object.
typeof operator: Used to check the type of a value at runtime.
Built-in functions like Array.isArray(): Used to check if a value
is an array.

Discriminated Union

Using a “Discriminated Union” is a pattern in TypeScript where an
explicit “tag” is added to objects to distinguish between different

let x: number | undefined = 10;

if (x !== undefined) {

 x += 100; // The type is number, which had been narrowed by the

}

let x: number | undefined = 10;

if (x === undefined) {

 throw 'error';

}

x += 100;

types within a union. This pattern is also referred to as a “tagged
union.” In the following example, the “tag” is represented by the
property “type”:

User-Defined Type Guards

In cases where TypeScript is unable to determine a type, it is
possible to write a helper function known as a “user-defined type
guard.” In the following example, we will utilize a Type Predicate to
narrow down the type after applying certain filtering:

Primitive Types

TypeScript supports 7 primitive types. A primitive data type refers to
a type that is not an object and does not have any methods
associated with it. In TypeScript, all primitive types are immutable,
meaning their values cannot be changed once they are assigned.

type A = { type: 'type_a'; value: number };

type B = { type: 'type_b'; value: string };

const x = (input: A | B): string | number => {

 switch (input.type) {

 case 'type_a':

 return input.value + 100; // type is A

 case 'type_b':

 return input.value + 'extra'; // type is B

 }

};

const data = ['a', null, 'c', 'd', null, 'f'];

const r1 = data.filter(x => x != null); // The type is (string | nu

const isValid = (item: string | null): item is string => item !== n

const r2 = data.filter(isValid); // The type is fine now string[], b

string

The string primitive type stores textual data, and the value is always
double or single-quoted.

Strings can span multiple lines if surrounded by the backtick (`)
character:

boolean

The boolean data type in TypeScript stores a binary value, either true
or false.

number

A number data type in TypeScript is represented with a 64-bit floating
point value. A number type can represent integers and fractions.
TypeScript also supports hexadecimal, binary, and octal, for
instance:

bigInt

const x: string = 'x';

const y: string = 'y';

let sentence: string = `xxx,

 yyy`;

const isReady: boolean = true;

const decimal: number = 10;

const hexadecimal: number = 0xa00d; // Hexadecimal starts with 0x

const binary: number = 0b1010; // Binary starts with 0b

const octal: number = 0o633; // Octal starts with 0o

A bigInt represents numeric values that are very large (253 – 1) and
cannot be represented with a number.

A bigInt can be created by calling the built-in function BigInt() or by
adding n to the end of any integer numeric literal:

Notes:

bigInt values cannot be mixed with number and cannot be used
with built-in Math, they must be coerced to the same type.
bigInt values are available only if target configuration is ES2020
or higher.

Symbol

Symbols are unique identifiers that can be used as property keys in
objects to prevent naming conflicts.

null and undefined

const x: bigint = BigInt(9007199254740991);

const y: bigint = 9007199254740991n;

type Obj = {

 [sym: symbol]: number;

};

const a = Symbol('a');

const b = Symbol('b');

let obj: Obj = {};

obj[a] = 123;

obj[b] = 456;

console.log(obj[a]); // 123

console.log(obj[b]); // 456

null and undefined types both represent no value or the absence of
any value.

The undefined type means the value is not assigned or initialized or
indicates an unintentional absence of value.

The null type means that we know that the field does not have a
value, so value is unavailable, it indicates an intentional absence of
value.

Array

An array is a data type that can store multiple values of the same
type or not. It can be defined using the following syntax:

TypeScript supports readonly arrays using the following syntax:

TypeScript supports tuple and readonly tuple:

any

The any data type represents literally “any” value, it is the default
value when TypeScript cannot infer the type or is not specified.

const x: string[] = ['a', 'b'];

const y: Array<string> = ['a', 'b'];

const j: Array<string | number> = ['a', 1, 'b', 2]; // Union

const x: readonly string[] = ['a', 'b']; // Readonly modifier

const y: ReadonlyArray<string> = ['a', 'b'];

const j: ReadonlyArray<string | number> = ['a', 1, 'b', 2];

j.push('x'); // Invalid

const x: [string, number] = ['a', 1];

const y: readonly [string, number] = ['a', 1];

When using any TypeScript compiler skips the type checking so
there is no type safety when any is being used. Generally do not use
any to silence the compiler when an error occurs, instead focus on
fixing the error as with using any it is possible to break contracts and
we lose the benefits of TypeScript autocomplete.

The any type could be useful during a gradual migration from
JavaScript to TypeScript, as it can silence the compiler.

For new projects use TypeScript configuration noImplicitAny which
enables TypeScript to issue errors where any is used or inferred.

The anytype is usually a source of errors which can mask real
problems with your types. Avoid using it as much as possible.

Type Annotations

On variables declared using var, let and const, it is possible to
optionally add a type:

TypeScript does a good job of inferring types, especially when
simple one, so these declarations in most cases are not necessary.

On functions is possible to add type annotations to parameters:

The following is an example using a anonymous functions (so called
lambda function):

const x: number = 1;

function sum(a: number, b: number) {

 return a + b;

}

const sum = (a: number, b: number) => a + b;

These annotation can be avoided when a default value for a
parameter is present:

Return type annotations can be added to functions:

This is useful especially for more complex functions as writing
expliciting the return type before an implementation can help better
think about the function.

Generally consider annotating type signatures but not the body local
variables and add types always to object literals.

Optional Properties

An object can specify Optional Properties by adding a question mark
? to the end of the property name:

It is possible to specify a default value when a property is optional”

Readonly Properties

const sum = (a = 10, b: number) => a + b;

const sum = (a = 10, b: number): number => a + b;

type X = {

 a: number;

 b?: number; // Optional

};

type X = {

 a: number;

 b?: number;

};

const x = ({ a, b = 100 }: X) => a + b;

Is it possible to prevent writing on a property by using the modifier
readonlywhich makes sure that the property cannot be re-written
but does not provide any guarantee of total immutability:

Index Signatures

In TypeScript we can use as index signature string, number, and
symbol:

Please note that JavaScript automatically converts an index with
number to an index with string so k[1] or k["1"] return the same
value.

Extending Types

interface Y {

 readonly a: number;

}

type X = {

 readonly a: number;

};

type J = Readonly<{

 a: number;

}>;

type K = {

 readonly [index: number]: string;

};

type K = {

 [name: string | number]: string;

};

const k: K = { x: 'x', 1: 'b' };

console.log(k['x']);

console.log(k[1]);

console.log(k['1']); // Same result as k[1]

It is possible to extend an interface (copy members from another
type):

It is also possible to extend from multiple types:

The extends keyword works only on interfaces and classes, for types
use an intersection:

It is possible to extend a type using an inference but not vice versa:

interface X {

 a: string;

}

interface Y extends X {

 b: string;

}

interface A {

 a: string;

}

interface B {

 b: string;

}

interface Y extends A, B {

 y: string;

}

type A = {

 a: number;

};

type B = {

 b: number;

};

type C = A & B;

type A = {

 a: string;

};

interface B extends A {

 b: string;

}

Literal Types

A Literal Type is a single element set from a collective type, it
defines a very exact value that is a JavaScript primitive.

Literal Types in TypeScript are numbers, strings, and booleans.

Example of literals:

String, Numeric, and Boolean Literal Types are used in the union,
type guard, and type aliases. In the following example you can see a
type alias union, O can be the only value specified and not any other
string:

Literal Inference

Literal Inference is a feature in TypeScript that allows the type of a
variable or parameter to be inferred based on its value.

In the following example we can see that TypeScript considers x a
literal type as the value cannot be changed any time later, when
instead y is inferred as string as it can be modified any time later.

In the following example we can see that o.x was inferred as a string
(and not a literal of a) as TypeScript considers that the value can be
changed any time later.

const a = 'a'; // String literal type

const b = 1; // Numeric literal type

const c = true; // Boolean literal type

type O = 'a' | 'b' | 'c';

const x = 'x'; // Literal type of 'x', because this value cannot be

let y = 'y'; // Type string, as we can change this value

type X = 'a' | 'b';

As you can see the code throws an error when passing o.x to fn as X
is a narrower type.

We can solve this issue by using type assertion using const or the X
type:

or:

strictNullChecks

strictNullChecks is a TypeScript compiler option that enforces strict
null checking. When this option is enabled, variables and
parameters can only be assigned null or undefined if they have been
explicitly declared to be of that type using the union type null |
undefined. If a variable or parameter is not explicitly declared as
nullable, TypeScript will generate an error to prevent potential
runtime errors.

type X = a | b ;

let o = {

 x: 'a', // This is a wider string

};

const fn = (x: X) => `${x}-foo`;

console.log(fn(o.x)); // Argument of type 'string' is not assignable

let o = {

 x: 'a' as const,

};

let o = {

 x: 'a' as X,

};

Enums

In TypeScript, an enum is a set of named constant values.

Enums can be defined in different ways:

Numeric enums

In TypeScript, a Numeric Enum is an Enum where each constant is
assigned a numeric value, starting from 0 by default.

It is possible to specify custom values by explicitly assigning them:

String enums

In TypeScript, a String enum is an Enum where each constant is
assigned a string value.

enum Color {

 Red = '#ff0000',

 Green = '#00ff00',

 Blue = '#0000ff',

}

enum Size {

 Small, // value starts from 0

 Medium,

 Large,

}

enum Size {

 Small = 10,

 Medium,

 Large,

}

console.log(Size.Medium); // 11

Note: TypeScript allows the usage of heterogeneous Enums where
string and numeric members can coexist.

Constant enums

A constant enum in TypeScript is a special type of Enum where all
the values are known at compile time and are inlined wherever the
enum is used, resulting in more efficient code.

Will be compiled into:

Notes: Const Enums have hardcoded values, erasing the Enum,
which can be more efficient in self-contained libraries but is
generally not desirable. Also, Const enums cannot have computed
members.

Reverse mapping

In TypeScript, reverse mappings in Enums refer to the ability to
retrieve the Enum member name from its value. By default, Enum
members have forward mappings from name to value, but reverse
mappings can be created by explicitly setting values for each
member. Reverse mappings are useful when you need to look up an
Enum member by its value, or when you need to iterate over all the

enum Language {

 English = 'EN',

 Spanish = 'ES',

}

const enum Language {

 English = 'EN',

 Spanish = 'ES',

}

console.log(Language.English);

console.log('EN' /* Language.English */);

Enum members. Note that only numeric enums members will
generate reverse mappings, while String Enum members do not get
a reverse mapping generated at all.

The following enum:

Compiles to:

Therefore, mapping values to keys works for numeric enum
members, but not for string enum members:

enum Grade {

 A = 90,

 B = 80,

 C = 70,

 F = 'fail',

}

'use strict';

var Grade;

(function (Grade) {

 Grade[(Grade['A'] = 90)] = 'A';

 Grade[(Grade['B'] = 80)] = 'B';

 Grade[(Grade['C'] = 70)] = 'C';

 Grade['F'] = 'fail';

})(Grade || (Grade = {}));

enum Grade {

 A = 90,

 B = 80,

 C = 70,

 F = 'fail',

}

const myGrade = Grade.A;

console.log(Grade[myGrade]); // A

console.log(Grade[90]); // A

const failGrade = Grade.F;

console.log(failGrade); // fail

console.log(Grade[failGrade]); // Element implicitly has an 'any' ty

Ambient enums

An ambient enum in TypeScript is a type of Enum that is defined in
a declaration file (*.d.ts) without an associated implementation. It
allows you to define a set of named constants that can be used in a
type-safe way across different files without having to import the
implementation details in each file.

Computed and constant members

In TypeScript, a computed member is a member of an Enum that
has a value calculated at runtime, while a constant member is a
member whose value is set at compile-time and cannot be changed
during runtime. Computed members are allowed in regular Enums,
while constant members are allowed in both regular and const
enums.

Enums are denoted by unions comprising their member types. The
values of each member can be determined through constant or non-
constant expressions, with members possessing constant values
being assigned literal types. To illustrate, consider the declaration of

// Constant members

enum Color {

 Red = 1,

 Green = 5,

 Blue = Red + Green,

}

console.log(Color.Blue); // 6 generation at compilation time

// Computed members

enum Color {

 Red = 1,

 Green = Math.pow(2, 2),

 Blue = Math.floor(Math.random() * 3) + 1,

}

console.log(Color.Blue); // random number generated at run time

type E and its subtypes E.A, E.B, and E.C. In this case, E represents
the union E.A | E.B | E.C.

Narrowing

TypeScript narrowing is the process of refining the type of a variable
within a conditional block. This is useful when working with union
types, where a variable can have more than one type.

TypeScript recognizes several ways to narrow the type:

typeof type guards

The typeof type guard is one specific type guard in TypeScript that
checks the type of a variable based on its built-in JavaScript type.

Truthiness narrowing

const identity = (value: number) => value;

enum E {

 A = 2 * 5, // Numeric literal

 B = 'bar', // String literal

 C = identity(42), // Opaque computed

}

console.log(E.C); //42

const fn = (x: number | string) => {

 if (typeof x === 'number') {

 return x + 1; // x is number

 }

 return -1;

};

Truthiness narrowing in TypeScript works by checking whether a
variable is truthy or falsy to narrow its type accordingly.

Equality narrowing

Equality narrowing in TypeScript works by checking whether a
variable is equal to a specific value or not, to narrow its type
accordingly.

It is used in conjunction with switch statements and equality
operators such as ===, !==, ==, and != to narrow down types.

In Operator narrowing

The in Operator narrowing in TypeScript is a way to narrow the type
of a variable based on whether a property exists within the
variable’s type.

const toUpperCase = (name: string | null) => {

 if (name) {

 return name.toUpperCase();

 } else {

 return null;

 }

};

const checkStatus = (status: 'success' | 'error') => {

 switch (status) {

 case 'success':

 return true;

 case 'error':

 return null;

 }

};

type Dog = {

 name: string;

 breed: string;

};

instanceof narrowing

The instanceof operator narrowing in TypeScript is a way to narrow
the type of a variable based on its constructor function, by checking
if an object is an instance of a certain class or interface.

type Cat = {

 name: string;

 likesCream: boolean;

};

const getAnimalType = (pet: Dog | Cat) => {

 if ('breed' in pet) {

 return 'dog';

 } else {

 return 'cat';

 }

};

class Square {

 constructor(public width: number) {}

}

class Rectangle {

 constructor(

 public width: number,

 public height: number

) {}

}

function area(shape: Square | Rectangle) {

 if (shape instanceof Square) {

 return shape.width * shape.width;

 } else {

 return shape.width * shape.height;

 }

}

const square = new Square(5);

const rectangle = new Rectangle(5, 10);

console.log(area(square)); // 25

console.log(area(rectangle)); // 50

Assignments

TypeScript narrowing using assignments is a way to narrow the type
of a variable based on the value assigned to it. When a variable is
assigned a value, TypeScript infers its type based on the assigned
value, and it narrows the type of the variable to match the inferred
type.

Control Flow Analysis

Control Flow Analysis in TypeScript is a way to statically analyze the
code flow to infer the types of variables, allowing the compiler to
narrow the types of those variables as needed, based on the results
of the analysis.

Prior to TypeScript 4.4, code flow analysis would only be applied to
code within an if statement, but from TypeScript 4.4, it can also be
applied to conditional expressions and discriminant property
accesses indirectly referenced through const variables.

For example:

let value: string | number;

value = 'hello';

if (typeof value === 'string') {

 console.log(value.toUpperCase());

}

value = 42;

if (typeof value === 'number') {

 console.log(value.toFixed(2));

}

const f1 = (x: unknown) => {

 const isString = typeof x === 'string';

 if (isString) {

 x.length;

 }

};

Some examples where narrowing does not occur:

Notes: Up to five levels of indirection are analyzed in conditional
expressions.

Type Predicates

Type Predicates in TypeScript are functions that return a boolean
value and are used to narrow the type of a variable to a more
specific type.

const f2 = (

 obj: { kind: 'foo'; foo: string } | { kind: 'bar'; bar: number }

) => {

 const isFoo = obj.kind === 'foo';

 if (isFoo) {

 obj.foo;

 } else {

 obj.bar;

 }

};

const f1 = (x: unknown) => {

 let isString = typeof x === 'string';

 if (isString) {

 x.length; // Error, no narrowing because isString it is not

 }

};

const f6 = (

 obj: { kind: 'foo'; foo: string } | { kind: 'bar'; bar: number }

) => {

 const isFoo = obj.kind === 'foo';

 obj = obj;

 if (isFoo) {

 obj.foo; // Error, no narrowing because obj is assigned in f

 }

};

Discriminated Unions

Discriminated Unions in TypeScript are a type of union type that
uses a common property, known as the discriminant, to narrow
down the set of possible types for the union.

const isString = (value: unknown): value is string => typeof value

const foo = (bar: unknown) => {

 if (isString(bar)) {

 console.log(bar.toUpperCase());

 } else {

 console.log('not a string');

 }

};

type Square = {

 kind: 'square'; // Discriminant

 size: number;

};

type Circle = {

 kind: 'circle'; // Discriminant

 radius: number;

};

type Shape = Square | Circle;

const area = (shape: Shape) => {

 switch (shape.kind) {

 case 'square':

 return Math.pow(shape.size, 2);

 case 'circle':

 return Math.PI * Math.pow(shape.radius, 2);

 }

};

const square: Square = { kind: 'square', size: 5 };

const circle: Circle = { kind: 'circle', radius: 2 };

The never Type

When a variable is narrowed to a type that cannot contain any
values, the TypeScript compiler will infer that the variable must be
of the never type. This is because The never Type represents a value
that can never be produced.

Exhaustiveness checking

Exhaustiveness checking is a feature in TypeScript that ensures all
possible cases of a discriminated union are handled in a switch
statement or an if statement.

console.log(area(square)); // 25

console.log(area(circle)); // 12.566370614359172

const printValue = (val: string | number) => {

 if (typeof val === 'string') {

 console.log(val.toUpperCase());

 } else if (typeof val === 'number') {

 console.log(val.toFixed(2));

 } else {

 // val has type never here because it can never be anything

 const neverVal: never = val;

 console.log(`Unexpected value: ${neverVal}`);

 }

};

type Direction = 'up' | 'down';

const move = (direction: Direction) => {

 switch (direction) {

 case 'up':

 console.log('Moving up');

 break;

The never type is used to ensure that the default case is exhaustive
and that TypeScript will raise an error if a new value is added to the
Direction type without being handled in the switch statement.

Object Types

In TypeScript, object types describe the shape of an object. They
specify the names and types of the object’s properties, as well as
whether those properties are required or optional.

In TypeScript, you can define object types in two primary ways:

Interface which defines the shape of an object by specifying the
names, types, and optionality of its properties.

Type alias, similar to an interface, defines the shape of an object.
However, it can also create a new custom type that is based on an
existing type or a combination of existing types. This includes
defining union types, intersection types, and other complex types.

 case 'down':

 console.log('Moving down');

 break;

 default:

 const exhaustiveCheck: never = direction;

 console.log(exhaustiveCheck); // This line will never be

 }

};

interface User {

 name: string;

 age: number;

 email?: string;

}

type Point = {

 x: number;

It also possible to define a type anonymously:

Tuple Type (Anonymous)

A Tuple Type is a type that represents an array with a fixed number
of elements and their corresponding types. A tuple type enforces a
specific number of elements and their respective types in a fixed
order. Tuple types are useful when you want to represent a
collection of values with specific types, where the position of each
element in the array has a specific meaning.

Named Tuple Type (Labeled)

Tuple types can include optional labels or names for each element.
These labels are for readability and tooling assistance, and do not
affect the operations you can perform with them.

Fixed Length Tuple

A Fixed Length Tuple is a specific type of tuple that enforces a fixed
number of elements of specific types, and disallows any

 y: number;

};

const sum = (x: { a: number; b: number }) => x.a + x.b;

console.log(sum({ a: 5, b: 1 }));

type Point = [number, number];

type T = string;

type Tuple1 = [T, T];

type Tuple2 = [a: T, b: T];

type Tuple3 = [a: T, T]; // Named Tuple plus Anonymous Tuple

modifications to the length of the tuple once it is defined.

Fixed Length Tuples are useful when you need to represent a
collection of values with a specific number of elements and specific
types, and you want to ensure that the length and types of the tuple
cannot be changed inadvertently.

Union Type

A Union Type is a type that represents a value that can be one of
several types. Union Types are denoted using the | symbol between
each possible type.

const x = [10, 'hello'] as const;

x.push(2); // Error

let x: string | number;

x = 'hello'; // Valid

x = 123; // Valid

Intersection Types

An Intersection Type is a type that represents a value that has all
the properties of two or more types. Intersection Types are denoted
using the & symbol between each type.

Type Indexing

Type indexing refers to the ability to define types that can be
indexed by a key that is not known in advance, using an index
signature to specify the type for properties that are not explicitly
declared.

Type from Value

type X = {

 a: string;

};

type Y = {

 b: string;

};

type J = X & Y; // Intersection

const j: J = {

 a: 'a',

 b: 'b',

};

type Dictionary<T> = {

 [key: string]: T;

};

const myDict: Dictionary<string> = { a: 'a', b: 'b' };

console.log(myDict['a']); // Returns a

Type from Value in TypeScript refers to the automatic inference of a
type from a value or expression through type inference.

Type from Func Return

Type from Func Return refers to the ability to automatically infer
the return type of a function based on its implementation. This
allows TypeScript to determine the type of the value returned by the
function without explicit type annotations.

Type from Module

Type from Module refers to the ability to use a module’s exported
values to automatically infer their types. When a module exports a
value with a specific type, TypeScript can use that information to
automatically infer the type of that value when it is imported into
another module.

Mapped Types

Mapped Types in TypeScript allow you to create new types based on
an existing type by transforming each property using a mapping

const x = 'x'; // TypeScript can automatically infer that the type o

const add = (x: number, y: number) => x + y; // TypeScript can infe

// calc.ts

export const add = (x: number, y: number) => x + y;

// index.ts

import { add } from 'calc';

const r = add(1, 2); // r is number

function. By mapping existing types, you can create new types that
represent the same information in a different format. To create a
mapped type, you access the properties of an existing type using the
keyof operator and then alter them to produce a new type. In the
following example:

we define MyMappedType to map over T’s properties, creating a
new type with each property as an array of its original type. Using
this, we create MyNewType to represent the same info as MyType,
but with each property as an array.

Mapped Type Modifiers

Mapped Type Modifiers in TypeScript enable the transformation of
properties within an existing type:

readonly or +readonly: This renders a property in the mapped
type as read-only.
-readonly: This allows a property in the mapped type to be
mutable.
?: This designates a property in the mapped type as optional.

Examples:

type MyMappedType<T> = {

 [P in keyof T]: T[P][];

};

type MyType = {

 foo: string;

 bar: number;

};

type MyNewType = MyMappedType<MyType>;

const x: MyNewType = {

 foo: ['hello', 'world'],

 bar: [1, 2, 3],

};

type ReadOnly<T> = { readonly [P in keyof T]: T[P] }; // All prope

Conditional Types

Conditional Types are a way to create a type that depends on a
condition, where the type to be created is determined based on the
result of the condition. They are defined using the extends keyword
and a ternary operator to conditionally choose between two types.

Distributive Conditional Types

Distributive Conditional Types are a feature that allow a type to be
distributed over a union of types, by applying a transformation to
each member of the union individually. This can be especially
useful when working with mapped types or higher-order types.

infer Type Inference in Conditional Types

type Mutable<T> = { -readonly [P in keyof T]: T[P] }; // All prope

type MyPartial<T> = { [P in keyof T]?: T[P] }; // All properties ma

type IsArray<T> = T extends any[] ? true : false;

const myArray = [1, 2, 3];

const myNumber = 42;

type IsMyArrayAnArray = IsArray<typeof myArray>; // Type true

type IsMyNumberAnArray = IsArray<typeof myNumber>; // Type false

type Nullable<T> = T extends any ? T | null : never;

type NumberOrBool = number | boolean;

type NullableNumberOrBool = Nullable<NumberOrBool>; // number | boo

The inferkeyword is used in conditional types to infer (extract) the
type of a generic parameter from a type that depends on it. This
allows you to write more flexible and reusable type definitions.

Predefined Conditional Types

In TypeScript, Predefined Conditional Types are built-in conditional
types provided by the language. They are designed to perform
common type transformations based on the characteristics of a
given type.

Exclude<UnionType, ExcludedType>: This type removes all the types
from Type that are assignable to ExcludedType.

Extract<Type, Union>: This type extracts all the types from Union
that are assignable to Type.

NonNullable<Type>: This type removes null and undefined from Type.

ReturnType<Type>: This type extracts the return type of a function
Type.

Parameters<Type>: This type extracts the parameter types of a
function Type.

Required<Type>: This type makes all properties in Type required.

Partial<Type>: This type makes all properties in Type optional.

Readonly<Type>: This type makes all properties in Type readonly.

type ElementType<T> = T extends (infer U)[] ? U : never;

type Numbers = ElementType<number[]>; // number

type Strings = ElementType<string[]>; // string

Template Union Types

Template union types can be used to merge and manipulate text
inside the type system for instance:

Any type

The any type is a special type (universal supertype) that can be used
to represent any type of value (primitives, objects, arrays, functions,
errors, symbols). It is often used in situations where the type of a
value is not known at compile time, or when working with values
from external APIs or libraries that do not have TypeScript typings.

By utilizing any type, you are indicating to the TypeScript compiler
that values should be represented without any limitations. In order
to maximizing type safety in your code consider the following:

Limit the usage of `any`` to specific cases where the type is
truly unknown.
Do not return any types from a function as you will lose type
safety in the code using that function weakening your type
safety.
Instead of any use @ts-ignore if you need to silence the compiler.

Unknown type

type Status = 'active' | 'inactive';

type Products = 'p1' | 'p2';

type ProductId = `id-${Products}-${Status}`; // "id-p1-active" | "id

let value: any;

value = true; // Valid

value = 7; // Valid

In TypeScript, the unknown type represents a value that is of an
unknown type. Unlike any type, which allows for any type of value,
unknown requires a type check or assertion before it can be used in a
specific way so no operations are permitted on an unknown without
first asserting or narrowing to a more specific type.

The unknown type is only assignable to any type and the unknown type
itself, it is a type-safe alternative to any.

Void type

The void type is used to indicate that a function does not return a
value.

Never type

The never type represents values that never occur. It is used to
denote functions or expressions that never return or throw an error.

For instance an infinite loop:

let value: unknown;

let value1: unknown = value; // Valid

let value2: any = value; // Valid

let value3: boolean = value; // Invalid

let value4: number = value; // Invalid

const add = (a: unknown, b: unknown): number | undefined =>

 typeof a === 'number' && typeof b === 'number' ? a + b : undef

console.log(add(1, 2)); // 3

console.log(add('x', 2)); // undefined

const sayHello = (): void => {

 console.log('Hello!');

};

Throwing an error:

The never type is useful in ensuring type safety and catching
potential errors in your code. It helps TypeScript analyze and infer
more precise types when used in combination with other types and
control flow statements, for instance:

Interface and Type

Common Syntax

In TypeScript, interfaces define the structure of objects, specifying
the names and types of properties or methods that an object must

const infiniteLoop = (): never => {

 while (true) {

 // do something

 }

};

const throwError = (message: string): never => {

 throw new Error(message);

};

type Direction = 'up' | 'down';

const move = (direction: Direction): void => {

 switch (direction) {

 case 'up':

 // move up

 break;

 case 'down':

 // move down

 break;

 default:

 const exhaustiveCheck: never = direction;

 throw new Error(`Unhandled direction: ${exhaustiveCheck

 }

};

have. The common syntax for defining an interface in TypeScript is
as follows:

Similarly for type definition:

interface InterfaceName or type TypeName: Defines the name of the
interface. property1: Type1: Specifies the properties of the interface
along with their corresponding types. Multiple properties can be
defined, each separated by a semicolon. method1(arg1: ArgType1,
arg2: ArgType2): ReturnType;: Specifies the methods of the interface.
Methods are defined with their names, followed by a parameter list
in parentheses and the return type. Multiple methods can be
defined, each separated by a semicolon.

Example interface:

Example of type:

interface InterfaceName {

 property1: Type1;

 // ...

 method1(arg1: ArgType1, arg2: ArgType2): ReturnType;

 // ...

}

type TypeName = {

 property1: Type1;

 // …

 method1(arg1: ArgType1, arg2: ArgType2): ReturnType;

 // ...

};

interface Person {

 name: string;

 age: number;

 greet(): void;

}

type TypeName = {

 property1: string;

In TypeScript, types are used to define the shape of data and enforce
type checking. There are several common syntaxes for defining
types in TypeScript, depending on the specific use case. Here are
some examples:

Basic Types

Objects and Interfaces

Union and Intersection Types

Built-in Type Primitives

TypeScript has several built-in type primitives that can be used to
define variables, function parameters, and return types:

 method1(arg1: string, arg2: string): string;

};

let myNumber: number = 123; // number type

let myBoolean: boolean = true; // boolean type

let myArray: string[] = ['a', 'b']; // array of strings

let myTuple: [string, number] = ['a', 123]; // tuple

const x: { name: string; age: number } = { name: 'Simon', age: 7 };

type MyType = string | number; // Union type

let myUnion: MyType = 'hello'; // Can be a string

myUnion = 123; // Or a number

type TypeA = { name: string };

type TypeB = { age: number };

type CombinedType = TypeA & TypeB; // Intersection type

let myCombined: CombinedType = { name: 'John', age: 25 }; // Object

number: Represents numeric values, including integers and
floating-point numbers.
string: Represents textual data
boolean: Represents logical values, which can be either true or
false.
null: Represents the absence of a value.
undefined: Represents a value that has not been assigned or has
not been defined.
symbol: Represents a unique identifier. Symbols are typically
used as keys for object properties.
bigint: Represents arbitrary-precision integers.
any: Represents a dynamic or unknown type. Variables of type
any can hold values of any type, and they bypass type checking.
void: Represents the absence of any type. It is commonly used as
the return type of functions that do not return a value.
never: Represents a type for values that never occur. It is
typically used as the return type of functions that throw an error
or enter an infinite loop.

Common Built-in JS Objects

TypeScript is a superset of JavaScript, it includes all the commonly
used built-in JavaScript objects. You can find an extensive list of
these objects on the Mozilla Developer Network (MDN)
documentation website: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects

Here is a list of some commonly used built-in JavaScript objects:

Function
Object
Boolean
Error
Number
BigInt

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects

Math
Date
String
RegExp
Array
Map
Set
Promise
Intl

Overloads

Function overloads in TypeScript allow you to define multiple
function signatures for a single function name, enabling you to
define functions that can be called in multiple ways. Here’s an
example:

Here’s another example of using function overloads within a class:

// Overloads

function sayHi(name: string): string;

function sayHi(names: string[]): string[];

// Implementation

function sayHi(name: unknown): unknown {

 if (typeof name === 'string') {

 return `Hi, ${name}!`;

 } else if (Array.isArray(name)) {

 return name.map(name => `Hi, ${name}!`);

 }

 throw new Error('Invalid value');

}

sayHi('xx'); // Valid

sayHi(['aa', 'bb']); // Valid

class Greeter {

 message: string;

Merging and Extension

Merging and extension refer to two different concepts related to
working with types and interfaces.

Merging allows you to combine multiple declarations of the same
name into a single definition, for example, when you define an
interface with the same name multiple times:

 constructor(message: string) {

 this.message = message;

 }

 // overload

 sayHi(name: string): string;

 sayHi(names: string[]): ReadonlyArray<string>;

 // implementation

 sayHi(name: unknown): unknown {

 if (typeof name === 'string') {

 return `${this.message}, ${name}!`;

 } else if (Array.isArray(name)) {

 return name.map(name => `${this.message}, ${name}!`);

 }

 throw new Error('value is invalid');

 }

}

console.log(new Greeter('Hello').sayHi('Simon'));

interface X {

 a: string;

}

interface X {

 b: number;

}

const person: X = {

 a: 'a',

Extension refers to the ability to extend or inherit from existing
types or interfaces to create new ones. It is a mechanism to add
additional properties or methods to an existing type without
modifying its original definition. Example:

Differences between Type and Interface

Declaration merging (augmentation):

Interfaces support declaration merging, which means that you can
define multiple interfaces with the same name, and TypeScript will
merge them into a single interface with the combined properties
and methods. On the other hand, types do not support declaration
merging. This can be helpful when you want to add extra
functionality or customize existing types without modifying the
original definitions or patching missing or incorrect types.

 b: 7,

};

interface Animal {

 name: string;

 eat(): void;

}

interface Bird extends Animal {

 sing(): void;

}

const dog: Bird = {

 name: 'Bird 1',

 eat() {

 console.log('Eating');

 },

 sing() {

 console.log('Singing');

 },

};

Extending other types/interfaces:

Both types and interfaces can extend other types/interfaces, but the
syntax is different. With interfaces, you use the extends keyword to
inherit properties and methods from other interfaces. However, an
interface cannot extend a complex type like a union type.

For types, you use the & operator to combine multiple types into a
single type (intersection).

interface A {

 x: string;

}

interface A {

 y: string;

}

const j: A = {

 x: 'xx',

 y: 'yy',

};

interface A {

 x: string;

 y: number;

}

interface B extends A {

 z: string;

}

const car: B = {

 x: 'x',

 y: 123,

 z: 'z',

};

interface A {

 x: string;

 y: number;

}

type B = A & {

 j: string;

};

Union and Intersection Types:

Types are more flexible when it comes to defining Union and
Intersection Types. With the type keyword, you can easily create
union types using the | operator and intersection types using the &
operator. While interfaces can also represent union types indirectly,
they don’t have built-in support for intersection types.

Example with interfaces:

const c: B = {

 x: 'x',

 y: 123,

 j: 'j',

};

type Department = 'dep-x' | 'dep-y'; // Union

type Person = {

 name: string;

 age: number;

};

type Employee = {

 id: number;

 department: Department;

};

type EmployeeInfo = Person & Employee; // Intersection

interface A {

 x: 'x';

}

interface B {

 y: 'y';

}

type C = A | B; // Union of interfaces

Class

Class Common Syntax

The class keyword is used in TypeScript to define a class. Below, you
can see an example:

The class keyword is used to define a class named “Person”.

The class has two private properties: name of type string and age of
type number.

The constructor is defined using the constructor keyword. It takes
name and age as parameters and assigns them to the corresponding
properties.

The class has a public method named sayHi that logs a greeting
message.

To create an instance of a class in TypeScript, you can use the new
keyword followed by the class name, followed by parentheses `()``.
For instance:

class Person {

 private name: string;

 private age: number;

 constructor(name: string, age: number) {

 this.name = name;

 this.age = age;

 }

 public sayHi(): void {

 console.log(

 `Hello, my name is ${this.name} and I am ${this.age} ye

);

 }

}

Constructor

Constructors are special methods within a class that are used to
initialize the object’s properties when an instance of the class is
created.

It is possible to overload a constructor using the following syntax:

const myObject = new Person('John Doe', 25);

myObject.sayHi(); // Output: Hello, my name is John Doe and I am 25

class Person {

 public name: string;

 public age: number;

 constructor(name: string, age: number) {

 this.name = name;

 this.age = age;

 }

 sayHello() {

 console.log(

 `Hello, my name is ${this.name} and I'm ${this.age} yea

);

 }

}

const john = new Person('Simon', 17);

john.sayHello();

type Sex = 'm' | 'f';

class Person {

 name: string;

 age: number;

 sex: Sex;

 constructor(name: string, age: number, sex?: Sex);

 constructor(name: string, age: number, sex: Sex) {

In TypeScript, it is possible to define multiple constructor overloads,
but you can have only one implementation that must be compatible
with all the overloads, this can be achieved by using an optional
parameter.

Private and Protected Constructors

 this.name = name;

 this.age = age;

 this.sex = sex ?? 'm';

 }

}

const p1 = new Person('Simon', 17);

const p2 = new Person('Alice', 22, 'f');

class Person {

 name: string;

 age: number;

 constructor();

 constructor(name: string);

 constructor(name: string, age: number);

 constructor(name?: string, age?: number) {

 this.name = name ?? 'Unknown';

 this.age = age ?? 0;

 }

 displayInfo() {

 console.log(`Name: ${this.name}, Age: ${this.age}`);

 }

}

const person1 = new Person();

person1.displayInfo(); // Name: Unknown, Age: 0

const person2 = new Person('John');

person2.displayInfo(); // Name: John, Age: 0

const person3 = new Person('Jane', 25);

person3.displayInfo(); // Name: Jane, Age: 25

In TypeScript, constructors can be marked as private or protected,
which restricts their accessibility and usage.

Private Constructors: Can be called only within the class itself.
Private constructors are often used in scenarios where you want to
enforce a singleton pattern or restrict the creation of instances to a
factory method within the class

Protected Constructors: Protected constructors are useful when you
want to create a base class that should not be instantiated directly
but can be extended by subclasses.

Access Modifiers

Access Modifiers private, protected, and public are used to control
the visibility and accessibility of class members, such as properties
and methods, in TypeScript classes. These modifiers are essential
for enforcing encapsulation and establishing boundaries for
accessing and modifying the internal state of a class.

class BaseClass {

 protected constructor() {}

}

class DerivedClass extends BaseClass {

 private value: number;

 constructor(value: number) {

 super();

 this.value = value;

 }

}

// Attempting to instantiate the base class directly will result in

// const baseObj = new BaseClass(); // Error: Constructor of class '

// Create an instance of the derived class

const derivedObj = new DerivedClass(10);

The private modifier restricts access to the class member only
within the containing class.

The protected modifier allows access to the class member within the
containing class and its derived classes.

The public modifier provides unrestricted access to the class
member, allowing it to be accessed from anywhere.”

Get & Set

Getters and setters are special methods that allow you to define
custom access and modification behavior for class properties. They
enable you to encapsulate the internal state of an object and provide
additional logic when getting or setting the values of properties. In
TypeScript, getters and setters are defined using the get and set
keywords respectively. Here’s an example:

Auto-Accessors in Classes

TypeScript version 4.9 adds support for auto-accessors, a
forthcoming ECMAScript feature. They resemble class properties
but are declared with the “accessor” keyword.

class MyClass {

 private _myProperty: string;

 constructor(value: string) {

 this._myProperty = value;

 }

 get myProperty(): string {

 return this._myProperty;

 }

 set myProperty(value: string) {

 this._myProperty = value;

 }

}

Auto-accessors are “de-sugared” into private get and set accessors,
operating on an inaccessible property.

this

In TypeScript, the this keyword refers to the current instance of a
class within its methods or constructors. It allows you to access and
modify the properties and methods of the class from within its own
scope. It provides a way to access and manipulate the internal state
of an object within its own methods.

class Animal {

 accessor name: string;

 constructor(name: string) {

 this.name = name;

 }

}

class Animal {

 #__name: string;

 get name() {

 return this.#__name;

 }

 set name(value: string) {

 this.#__name = name;

 }

 constructor(name: string) {

 this.name = name;

 }

}

class Person {

 private name: string;

 constructor(name: string) {

 this.name = name;

 }

 public introduce(): void {

 console.log(`Hello, my name is ${this.name}.`);

Parameter Properties

Parameter properties allow you to declare and initialize class
properties directly within the constructor parameters avoiding
boilerplate code, example:

Abstract Classes

Abstract Classes are used in TypeScript mainly for inheritance, they
provide a way to define common properties and methods that can be
inherited by subclasses. This is useful when you want to define
common behavior and enforce that subclasses implement certain
methods. They provide a way to create a hierarchy of classes where
the abstract base class provides a shared interface and common
functionality for the subclasses.

 }

}

const person1 = new Person('Alice');

person1.introduce(); // Hello, my name is Alice.

class Person {

 constructor(

 private name: string,

 public age: number

) {

 // The "private" and "public" keywords in the constructor

 // automatically declare and initialize the corresponding cl

 }

 public introduce(): void {

 console.log(

 `Hello, my name is ${this.name} and I am ${this.age} ye

);

 }

}

const person = new Person('Alice', 25);

person.introduce();

With Generics

Classes with generics allow you to define reusable classes which can
work with different types.

abstract class Animal {

 protected name: string;

 constructor(name: string) {

 this.name = name;

 }

 abstract makeSound(): void;

}

class Cat extends Animal {

 makeSound(): void {

 console.log(`${this.name} meows.`);

 }

}

const cat = new Cat('Whiskers');

cat.makeSound(); // Output: Whiskers meows.

class Container<T> {

 private item: T;

 constructor(item: T) {

 this.item = item;

 }

 getItem(): T {

 return this.item;

 }

 setItem(item: T): void {

 this.item = item;

 }

}

const container1 = new Container<number>(42);

Decorators

Decorators provide a mechanism to add metadata, modify behavior,
validate, or extend the functionality of the target element. They are
functions that execute at runtime. Multiple decorators can be
applied to a declaration.

Decorators are experimental features, and the following examples
are only compatible with TypeScript version 5 or above using ES6.

For TypeScript versions prior to 5, they should be enabled using the
experimentalDecorators property in your tsconfig.json or by using --
experimentalDecorators in your command line (but the following
example won’t work).

Some of the common use cases for decorators include:

Watching property changes.
Watching method calls.
Adding extra properties or methods.
Runtime validation.
Automatic serialization and deserialization.
Logging.
Authorization and authentication.
Error guarding.

Note: Decorators for version 5 do not allow decorating parameters.

Types of decorators:

console.log(container1.getItem()); // 42

const container2 = new Container<string>('Hello');

container2.setItem('World');

console.log(container2.getItem()); // World

Class Decorators

Class Decorators are useful for extending an existing class, such as
adding properties or methods, or collecting instances of a class. In
the following example, we add a toString method that converts the
class into a string representation.

Property Decorator

type Constructor<T = {}> = new (...args: any[]) => T;

function toString<Class extends Constructor>(

 Value: Class,

 context: ClassDecoratorContext<Class>

) {

 return class extends Value {

 constructor(...args: any[]) {

 super(...args);

 console.log(JSON.stringify(this));

 console.log(JSON.stringify(context));

 }

 };

}

@toString

class Person {

 name: string;

 constructor(name: string) {

 this.name = name;

 }

 greet() {

 return 'Hello, ' + this.name;

 }

}

const person = new Person('Simon');

/* Logs:

{"name":"Simon"}

{"kind":"class","name":"Person"}

*/

Property decorators are useful for modifying the behavior of a
property, such as changing the initialization values. In the following
code, we have a script that sets a property to always be in uppercase:

Method Decorator

Method decorators allow you to change or enhance the behavior of
methods. Below is an example of a simple logger:

function upperCase<T>(

 target: undefined,

 context: ClassFieldDecoratorContext<T, string>

) {

 return function (this: T, value: string) {

 return value.toUpperCase();

 };

}

class MyClass {

 @upperCase

 prop1 = 'hello!';

}

console.log(new MyClass().prop1); // Logs: HELLO!

function log<This, Args extends any[], Return>(

 target: (this: This, ...args: Args) => Return,

 context: ClassMethodDecoratorContext<

 This,

 (this: This, ...args: Args) => Return

 >

) {

 const methodName = String(context.name);

 function replacementMethod(this: This, ...args: Args): Return {

 console.log(`LOG: Entering method '${methodName}'.`);

 const result = target.call(this, ...args);

 console.log(`LOG: Exiting method '${methodName}'.`);

 return result;

 }

 return replacementMethod;

It logs:

LOG: Entering method 'sayHello'.

Hello!

LOG: Exiting method 'sayHello'.

Getter and Setter Decorators

Getter and setter decorators allow you to change or enhance the
behavior of class accessors. They are useful, for instance, for
validating property assignments. Here’s a simple example for a
getter decorator:

}

class MyClass {

 @log

 sayHello() {

 console.log('Hello!');

 }

}

new MyClass().sayHello();

function range<This, Return extends number>(min: number, max: numbe

 return function (

 target: (this: This) => Return,

 context: ClassGetterDecoratorContext<This, Return>

) {

 return function (this: This): Return {

 const value = target.call(this);

 if (value < min || value > max) {

 throw 'Invalid';

 }

 Object.defineProperty(this, context.name, {

 value,

 enumerable: true,

 });

 return value;

 };

 };

Decorator Metadata

Decorator Metadata simplifies the process for decorators to apply
and utilize metadata in any class. They can access a new metadata
property on the context object, which can serve as a key for both
primitives and objects. Metadata information can be accessed on the
class via Symbol.metadata.

Metadata can be used for various purposes, such as debugging,
serialization, or dependency injection with decorators.

}

class MyClass {

 private _value = 0;

 constructor(value: number) {

 this._value = value;

 }

 @range(1, 100)

 get getValue(): number {

 return this._value;

 }

}

const obj = new MyClass(10);

console.log(obj.getValue); // Valid: 10

const obj2 = new MyClass(999);

console.log(obj2.getValue); // Throw: Invalid!

//@ts-ignore

Symbol.metadata ??= Symbol('Symbol.metadata'); // Simple polify

type Context =

 | ClassFieldDecoratorContext

 | ClassAccessorDecoratorContext

 | ClassMethodDecoratorContext; // Context contains property meta

function setMetadata(_target: any, context: Context) {

Inheritance

Inheritance refers to the mechanism by which a class can inherit
properties and methods from another class, known as the base class
or superclass. The derived class, also called the child class or
subclass, can extend and specialize the functionality of the base
class by adding new properties and methods or overriding existing
ones.

 // Set the metadata object with a primitive value

 context.metadata[context.name] = true;

}

class MyClass {

 @setMetadata

 a = 123;

 @setMetadata

 accessor b = 'b';

 @setMetadata

 fn() {}

}

const metadata = MyClass[Symbol.metadata]; // Get metadata informat

console.log(JSON.stringify(metadata)); // {"bar":true,"baz":true,"fo

class Animal {

 name: string;

 constructor(name: string) {

 this.name = name;

 }

 speak(): void {

 console.log('The animal makes a sound');

 }

}

TypeScript does not support multiple inheritance in the traditional
sense and instead allows inheritance from a single base class.
TypeScript supports multiple interfaces. An interface can define a
contract for the structure of an object, and a class can implement
multiple interfaces. This allows a class to inherit behavior and
structure from multiple sources.

class Dog extends Animal {

 breed: string;

 constructor(name: string, breed: string) {

 super(name);

 this.breed = breed;

 }

 speak(): void {

 console.log('Woof! Woof!');

 }

}

// Create an instance of the base class

const animal = new Animal('Generic Animal');

animal.speak(); // The animal makes a sound

// Create an instance of the derived class

const dog = new Dog('Max', 'Labrador');

dog.speak(); // Woof! Woof!"

interface Flyable {

 fly(): void;

}

interface Swimmable {

 swim(): void;

}

class FlyingFish implements Flyable, Swimmable {

 fly() {

 console.log('Flying...');

 }

The class keyword in TypeScript, similar to JavaScript, is often
referred to as syntactic sugar. It was introduced in ECMAScript 2015
(ES6) to offer a more familiar syntax for creating and working with
objects in a class-based manner. However, it’s important to note
that TypeScript, being a superset of JavaScript, ultimately compiles
down to JavaScript, which remains prototype-based at its core.

Statics

TypeScript has static members. To access the static members of a
class, you can use the class name followed by a dot, without the
need to create an object.

Property initialization

 swim() {

 console.log('Swimming...');

 }

}

const flyingFish = new FlyingFish();

flyingFish.fly();

flyingFish.swim();

class OfficeWorker {

 static memberCount: number = 0;

 constructor(private name: string) {

 OfficeWorker.memberCount++;

 }

}

const w1 = new OfficeWorker('James');

const w2 = new OfficeWorker('Simon');

const total = OfficeWorker.memberCount;

console.log(total); // 2

There are several ways how you can initialize properties for a class
in TypeScript:

Inline:

In the following example these initial values will be used when an
instance of the class is created.

In the constructor:

Using constructor parameters:

class MyClass {

 property1: string = 'default value';

 property2: number = 42;

}

class MyClass {

 property1: string;

 property2: number;

 constructor() {

 this.property1 = 'default value';

 this.property2 = 42;

 }

}

class MyClass {

 constructor(

 private property1: string = 'default value',

 public property2: number = 42

) {

 // There is no need to assign the values to the properties e

 }

 log() {

 console.log(this.property2);

 }

}

const x = new MyClass();

x.log();

Method overloading

Method overloading allows a class to have multiple methods with
the same name but different parameter types or a different number
of parameters. This allows us to call a method in different ways
based on the arguments passed.

Generics

Generics allow you to create reusable components and functions
that can work with multiple types. With generics, you can
parameterize types, functions, and interfaces, allowing them to
operate on different types without explicitly specifying them
beforehand.

Generics allow you to make code more flexible and reusable.

Generic Type

class MyClass {

 add(a: number, b: number): number; // Overload signature 1

 add(a: string, b: string): string; // Overload signature 2

 add(a: number | string, b: number | string): number | string {

 if (typeof a === 'number' && typeof b === 'number') {

 return a + b;

 }

 if (typeof a === 'string' && typeof b === 'string') {

 return a.concat(b);

 }

 throw new Error('Invalid arguments');

 }

}

const r = new MyClass();

console.log(r.add(10, 5)); // Logs 15

To define a generic type, you use angle brackets (<>) to specify the
type parameters, for instance:

Generic Classes

Generics can be applied also to classes, in this way they can work
with multiple types by using type parameters. This is useful to
create reusable class definitions that can operate on different data
types while maintaining type safety.

Generic Constraints

function identity<T>(arg: T): T {

 return arg;

}

const a = identity('x');

const b = identity(123);

const getLen = <T,>(data: ReadonlyArray<T>) => data.length;

const len = getLen([1, 2, 3]);

class Container<T> {

 private item: T;

 constructor(item: T) {

 this.item = item;

 }

 getItem(): T {

 return this.item;

 }

}

const numberContainer = new Container<number>(123);

console.log(numberContainer.getItem()); // 123

const stringContainer = new Container<string>('hello');

console.log(stringContainer.getItem()); // hello

Generic parameters can be constrained using the extends keyword
followed by a type or interface that the type parameter must satisfy.

In the following example T it is must containing a properly length in
order to be valid:

An interesting feature of generic introduced in version 3.4 RC is
Higher order function type inference which introduced propagated
generic type arguments:

This functionality allows more easily typed safe pointfree style
programming which is common in functional programming.

Generic contextual narrowing

Contextual narrowing for generics is the mechanism in TypeScript
that allows the compiler to narrow down the type of a generic

const printLen = <T extends { length: number }>(value: T): void =>

 console.log(value.length);

};

printLen('Hello'); // 5

printLen([1, 2, 3]); // 3

printLen({ length: 10 }); // 10

printLen(123); // Invalid

declare function pipe<A extends any[], B, C>(

 ab: (...args: A) => B,

 bc: (b: B) => C

): (...args: A) => C;

declare function list<T>(a: T): T[];

declare function box<V>(x: V): { value: V };

const listBox = pipe(list, box); // <T>(a: T) => { value: T[] }

const boxList = pipe(box, list); // <V>(x: V) => { value: V }[]

parameter based on the context in which it is used, it is useful when
working with generic types in conditional statements:

Erased Structural Types

In TypeScript, objects do not have to match a specific, exact type.
For instance, if we create an object that fulfills an interface’s
requirements, we can utilize that object in places where that
interface is required, even if there was no explicit connection
between them. Example:

function process<T>(value: T): void {

 if (typeof value === 'string') {

 // Value is narrowed down to type 'string'

 console.log(value.length);

 } else if (typeof value === 'number') {

 // Value is narrowed down to type 'number'

 console.log(value.toFixed(2));

 }

}

process('hello'); // 5

process(3.14159); // 3.14

type NameProp1 = {

 prop1: string;

};

function log(x: NameProp1) {

 console.log(x.prop1);

}

const obj = {

 prop2: 123,

 prop1: 'Origin',

};

log(obj); // Valid

Namespacing

In TypeScript, namespaces are used to organize code into logical
containers, preventing naming collisions and providing a way to
group related code together. The usage of the export keywords
allows access to the namespace in “outside” modules.

Symbols

Symbols are a primitive data type that represents an immutable
value which is guaranteed to be globally unique throughout the
lifetime of the program.

Symbols can be used as keys for object properties and provide a way
to create non-enumerable properties.

export namespace MyNamespace {

 export interface MyInterface1 {

 prop1: boolean;

 }

 export interface MyInterface2 {

 prop2: string;

 }

}

const a: MyNamespace.MyInterface1 = {

 prop1: true,

};

const key1: symbol = Symbol('key1');

const key2: symbol = Symbol('key2');

const obj = {

 [key1]: 'value 1',

 [key2]: 'value 2',

};

In WeakMaps and WeakSets, symbols are now permissible as keys.

Triple-Slash Directives

Triple-slash directives are special comments that provide
instructions to the compiler about how to process a file. These
directives begin with three consecutive slashes (///) and are
typically placed at the top of a TypeScript file and have no effects on
the runtime behavior.

Triple-slash directives are used to reference external dependencies,
specify module loading behavior, enable/disable certain compiler
features, and more. Few examples:

Referencing a declaration file:

Indicate the module format:

Enable compiler options, in the following example strict mode:

Type Manipulation

Creating Types from Types

Is it possible to create new types composing, manipulating or
transforming existing types.

console.log(obj[key1]); // value 1

console.log(obj[key2]); // value 2

/// <reference path="path/to/declaration/file.d.ts" />

/// <amd|commonjs|system|umd|es6|es2015|none>

/// <strict|noImplicitAny|noUnusedLocals|noUnusedParameters>

Intersection Types (&):

Allow you to combine multiple types into a single type:

Union Types (|):

Allow you to define a type that can be one of several types:

Mapped Types:

Allow you to transform the properties of an existing type to create
new type:

Conditional types:

Allow you to create types based on some conditions:

type A = { foo: number };

type B = { bar: string };

type C = A & B; // Intersection of A and B

const obj: C = { foo: 42, bar: 'hello' };

type Result = string | number;

const value1: Result = 'hello';

const value2: Result = 42;

type Mutable<T> = {

 readonly [P in keyof T]: T[P];

};

type Person = {

 name: string;

 age: number;

};

type ImmutablePerson = Mutable<Person>; // Properties become read-on

type ExtractParam<T> = T extends (param: infer P) => any ? P : nev

type MyFunction = (name: string) => number;

type ParamType = ExtractParam<MyFunction>; // string

Indexed Access Types

In TypeScript is it possible to access and manipulate the types of
properties within another type using an index, Type[Key].

Utility Types

Several built-in utility types can be used to manipulate types, below
a list of the most common used:

Awaited<T>

Constructs a type recursively unwrap Promises.

Partial<T>

Constructs a type with all properties of T set to optional.

type Person = {

 name: string;

 age: number;

};

type AgeType = Person['age']; // number

type MyTuple = [string, number, boolean];

type MyType = MyTuple[2]; // boolean

type A = Awaited<Promise<string>>; // string

type Person = {

 name: string;

 age: number;

};

type A = Partial<Person>; // { name?: string | undefined; age?: numb

Required<T>

Constructs a type with all properties of T set to required.

Readonly<T>

Constructs a type with all properties of T set to readonly.

Record<K, T>

Constructs a type with a set of properties K of type T.

type Person = {

 name?: string;

 age?: number;

};

type A = Required<Person>; // { name: string; age: number; }

type Person = {

 name: string;

 age: number;

};

type A = Readonly<Person>;

const a: A = { name: 'Simon', age: 17 };

a.name = 'John'; // Invalid

type Product = {

 name: string;

 price: number;

};

const products: Record<string, Product> = {

 apple: { name: 'Apple', price: 0.5 },

 banana: { name: 'Banana', price: 0.25 },

};

console.log(products.apple); // { name: 'Apple', price: 0.5 }

Pick<T, K>

Constructs a type by picking the specified properties K from T.

Omit<T, K>

Constructs a type by omitting the specified properties K from T.

Exclude<T, U>

Constructs a type by excluding all values of type U from T.

Extract<T, U>

Constructs a type by extracting all values of type U from T.

NonNullable<T>

Constructs a type by excluding null and undefined from T.

type Product = {

 name: string;

 price: number;

};

type Price = Pick<Product, 'price'>; // { price: number; }

type Product = {

 name: string;

 price: number;

};

type Name = Omit<Product, 'price'>; // { name: string; }

type Union = 'a' | 'b' | 'c';

type MyType = Exclude<Union, 'a' | 'c'>; // b

type Union = 'a' | 'b' | 'c';

type MyType = Extract<Union, 'a' | 'c'>; // a | c

Parameters<T>

Extracts the parameter types of a function type T.

ConstructorParameters<T>

Extracts the parameter types of a constructor function type T.

ReturnType<T>

Extracts the return type of a function type T.

InstanceType<T>

Extracts the instance type of a class type T.

type Union = 'a' | null | undefined | 'b';

type MyType = NonNullable<Union>; // 'a' | 'b'

type Func = (a: string, b: number) => void;

type MyType = Parameters<Func>; // [a: string, b: number]

class Person {

 constructor(

 public name: string,

 public age: number

) {}

}

type PersonConstructorParams = ConstructorParameters<typeof Person>

const params: PersonConstructorParams = ['John', 30];

const person = new Person(...params);

console.log(person); // Person { name: 'John', age: 30 }

type Func = (name: string) => number;

type MyType = ReturnType<Func>; // number

class Person {

 name: string;

ThisParameterType<T>

Extracts the type of ‘this’ parameter from a function type T.

OmitThisParameter<T>

Removes the ‘this’ parameter from a function type T.

ThisType<T>

Servers as a market for a contextual this type.

 constructor(name: string) {

 this.name = name;

 }

 sayHello() {

 console.log(`Hello, my name is ${this.name}!`);

 }

}

type PersonInstance = InstanceType<typeof Person>;

const person: PersonInstance = new Person('John');

person.sayHello(); // Hello, my name is John!

interface Person {

 name: string;

 greet(this: Person): void;

}

type PersonThisType = ThisParameterType<Person['greet']>; // Person

function capitalize(this: String) {

 return this[0].toUpperCase + this.substring(1).toLowerCase();

}

type CapitalizeType = OmitThisParameter<typeof capitalize>; // () =

type Logger = {

Uppercase<T>

Make uppercase the name of the input type T.

Lowercase<T>

Make lowercase the name of the input type T.

Capitalize<T>

Capitalize the name of the input type T.

Uncapitalize<T>

Uncapitalize the name of the input type T.

Others

 log: (error: string) => void;

};

let helperFunctions: { [name: string]: Function } & ThisType<Logger>

 hello: function () {

 this.log('some error'); // Valid as "log" is a part of "this

 this.update(); // Invalid

 },

};

type MyType = Uppercase<'abc'>; // "ABC"

type MyType = Lowercase<'ABC'>; // "abc"

type MyType = Capitalize<'abc'>; // "Abc"

type MyType = Uncapitalize<'Abc'>; // "abc"

Errors and Exception Handling

TypeScript allows you to catch and handle errors using standard
JavaScript error handling mechanisms:

Try-Catch-Finally Blocks:

You can also handle different types of error:

Custom Error Types:

It is possible to specify more specific error by extending on the
Error class:

try {

 // Code that might throw an error

} catch (error) {

 // Handle the error

} finally {

 // Code that always executes, finally is optional

}

try {

 // Code that might throw different types of errors

} catch (error) {

 if (error instanceof TypeError) {

 // Handle TypeError

 } else if (error instanceof RangeError) {

 // Handle RangeError

 } else {

 // Handle other errors

 }

}

class CustomError extends Error {

 constructor(message: string) {

 super(message);

 this.name = 'CustomError';

 }

}

throw new CustomError('This is a custom error.');

Mixin classes

Mixin classes allow you to combine and compose behavior from
multiple classes into a single class. They provide a way to reuse and
extend functionality without the need for deep inheritance chains.

abstract class Identifiable {

 name: string = '';

 logId() {

 console.log('id:', this.name);

 }

}

abstract class Selectable {

 selected: boolean = false;

 select() {

 this.selected = true;

 console.log('Select');

 }

 deselect() {

 this.selected = false;

 console.log('Deselect');

 }

}

class MyClass {

 constructor() {}

}

// Extend MyClass to include the behavior of Identifiable and Select

interface MyClass extends Identifiable, Selectable {}

// Function to apply mixins to a class

function applyMixins(source: any, baseCtors: any[]) {

 baseCtors.forEach(baseCtor => {

 Object.getOwnPropertyNames(baseCtor.prototype).forEach(name

 let descriptor = Object.getOwnPropertyDescriptor(

 baseCtor.prototype,

 name

);

 if (descriptor) {

 Object.defineProperty(source.prototype, name, descri

 }

 });

});

Asynchronous Language Features

As TypeScript is a superset of JavaScript, it has built-in
asynchronous language features of JavaScript as:

Promises:

Promises are a way to handle asynchronous operations and their
results using methods like .then() and .catch() to handle success
and error conditions.

To learn more: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Async/await:

Async/await keywords are a way to provide a more synchronous-
looking syntax for working with Promises. The async keyword is
used to define an asynchronous function, and the await keyword is
used within an async function to pause execution until a Promise is
resolved or rejected.

To learn more: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/await

 });

}

// Apply the mixins to MyClass

applyMixins(MyClass, [Identifiable, Selectable]);

let o = new MyClass();

o.name = 'abc';

o.logId();

o.select();

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await

The following API are well supported in TypeScript:

Fetch API: https://developer.mozilla.org/en-
US/docs/Web/API/Fetch_API

Web Workers: https://developer.mozilla.org/en-
US/docs/Web/API/Web_Workers_API

Shared Workers: https://developer.mozilla.org/en-
US/docs/Web/API/SharedWorker

WebSocket: https://developer.mozilla.org/en-
US/docs/Web/API/WebSockets_API

Iterators and Generators

Both Interators and Generators are well supported in TypeScript.

Iterators are objects that implement the iterator protocol, providing
a way to access elements of a collection or sequence one by one. It is
a structure that contains a pointer to the next element in the
iteration. They have a next() method that returns the next value in
the sequence along with a boolean indicating if the sequence is done.

class NumberIterator implements Iterable<number> {

 private current: number;

 constructor(

 private start: number,

 private end: number

) {

 this.current = start;

 }

 public next(): IteratorResult<number> {

 if (this.current <= this.end) {

 const value = this.current;

 this.current++;

 return { value, done: false };

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/API/SharedWorker
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

Generators are special functions defined using the function* syntax
that simplifies the creation of iterators. They use the yield keyword
to define the sequence of values and automatically pause and
resume execution when values are requested.

Generators make it easier to create iterators and are especially
useful for working with large or infinite sequences.

Example:

TypeScript also supports async iterators and async Generators.

 } else {

 return { value: undefined, done: true };

 }

 }

 [Symbol.iterator](): Iterator<number> {

 return this;

 }

}

const iterator = new NumberIterator(1, 3);

for (const num of iterator) {

 console.log(num);

}

function* numberGenerator(start: number, end: number): Generator<nu

 for (let i = start; i <= end; i++) {

 yield i;

 }

}

const generator = numberGenerator(1, 5);

for (const num of generator) {

 console.log(num);

}

To learn more: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Iterator

TsDocs JSDoc Reference

When working with a JavaScript code base, it is possible to help
TypeScript to infer the right Type by using JSDoc comments with
additional annotation to provide type information.

Example:

Full documentation is provided to this link:
https://www.typescriptlang.org/docs/handbook/jsdoc-supported-
types.html

From version 3.7 it is possible to generate .d.ts type definitions from
JavaScript JSDoc syntax. More information can be found here:
https://www.typescriptlang.org/docs/handbook/declaration-
files/dts-from-js.html

@types

/**

* Computes the power of a given number

* @constructor

* @param {number} base – The base value of the expression

* @param {number} exponent – The exponent value of the expression

*/

function power(base: number, exponent: number) {

 return Math.pow(base, exponent);

}

power(10, 2); // function power(base: number, exponent: number): num

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Generator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Iterator
https://www.typescriptlang.org/docs/handbook/jsdoc-supported-types.html
https://www.typescriptlang.org/docs/handbook/declaration-files/dts-from-js.html

Packages under the @types organization are special package naming
conventions used to provide type definitions for existing JavaScript
libraries or modules. For instance using:

npm install --save-dev @types/lodash

Will install the type definitions of lodash in your current project.

To contribute to the type definitions of @types package, please
submit a pull request to
https://github.com/DefinitelyTyped/DefinitelyTyped.

JSX

JSX (JavaScript XML) is an extension to the JavaScript language
syntax that allows you to write HTML-like code within your
JavaScript or TypeScript files. It is commonly used in React to
define the HTML structure.

TypeScript extends the capabilities of JSX by providing type
checking and static analysis.

To use JSX you need to set the jsx compiler option in your
tsconfig.json file. Two common configuration options:

“preserve”: emit .jsx files with the JSX unchanged. This option
tells TypeScript to keep the JSX syntax as-is and not transform
it during the compilation process. You can use this option if you
have a separate tool, like Babel, that handles the transformation.
“react”: enables TypeScript’s built-in JSX transformation.
React.createElement will be used.

All options are available here:
https://www.typescriptlang.org/tsconfig#jsx

https://github.com/DefinitelyTyped/DefinitelyTyped
https://www.typescriptlang.org/tsconfig#jsx

ES6 Modules

TypeScript does support ES6 (ECMAScript 2015) and many
subsequent versions. This means you can use ES6 syntax, such as
arrow functions, template literals, classes, modules, destructuring,
and more.

To enable ES6 features in your project, you can specify the target
property in the tsconfig.json.

A configuration example:

ES7 Exponentiation Operator

The exponentiation (**) operator computes the value obtained by
raising the first operand to the power of the second operand. It
functions similarly to Math.pow(), but with the added capability of
accepting BigInts as operands. TypeScript fully supports this
operator using as target in your tsconfig.json file es2016 or larger
version.

The for-await-of Statement

{

 "compilerOptions": {

 "target": "es6",

 "module": "es6",

 "moduleResolution": "node",

 "sourceMap": true,

 "outDir": "dist"

 },

 "include": ["src"]

}

console.log(2 ** (2 ** 2)); // 16

This is a JavaScript feature fully supported in TypeScript which
allows you to iterate over asynchronous iterable objects from target
version es2018.

New.target

You can use in TypeScript the new.target meta-property which
enables you to determine if a function or constructor was invoked
using the new operator. It allows you to detect whether an object
was created as a result of a constructor call.

async function* asyncNumbers(): AsyncIterableIterator<number> {

 yield Promise.resolve(1);

 yield Promise.resolve(2);

 yield Promise.resolve(3);

}

(async () => {

 for await (const num of asyncNumbers()) {

 console.log(num);

 }

})();

class Parent {

 constructor() {

 console.log(new.target); // Logs the constructor function us

 }

}

class Child extends Parent {

 constructor() {

 super();

 }

}

const parentX = new Parent(); // [Function: Parent]

const child = new Child(); // [Function: Child]

Dynamic Import Expressions

It is possible to conditionally load modules or lazy load them on-
demand using the ECMAScript proposal for dynamic import which
is supported in TypeScript.

The syntax for dynamic import expressions in TypeScript is as
follows:

“tsc –watch”

This command starts a TypeScript compiler with --watch parameter,
with the ability to automatically recompile TypeScript files
whenever they are modified.

tsc --watch

Starting from TypeScript version 4.9, file monitoring primarily relies
on file system events, automatically resorting to polling if an event-
based watcher cannot be established.

Non-null Assertion Operator (Postfix !)

The Non-null Assertion Operator (Postfix !) also called Definite
Assignment Assertions is a TypeScript feature that allows you to
assert that a variable or property is not null or undefined, even if

async function renderWidget() {

 const container = document.getElementById('widget');

 if (container !== null) {

 const widget = await import('./widget'); // Dynamic import

 widget.render(container);

 }

}

renderWidget();

TypeScript’s static type analysis suggests that it might be. With this
feature it is possible to remove any explicit checking.

Defaulted declarations

Defaulted declarations are used when a variable or parameter is
assigned a default value. This means that if no value is provided for
that variable or parameter, the default value will be used instead.

Optional Chaining

The optional chaining operator ?. works like the regular dot
operator (.) for accessing properties or methods. However, it
gracefully handles null or undefined values by terminating the
expression and returning undefined, instead of throwing an error.

type Person = {

 name: string;

};

const printName = (person?: Person) => {

 console.log(`Name is ${person!.name}`);

};

function greet(name: string = 'Anonymous'): void {

 console.log(`Hello, ${name}!`);

}

greet(); // Hello, Anonymous!

greet('John'); // Hello, John!

type Person = {

 name: string;

 age?: number;

 address?: {

 street?: string;

 city?: string;

 };

};

Nullish coalescing operator (??)

The nullish coalescing operator ?? returns the right-hand side value
if the left-hand side is null or undefined; otherwise, it returns the
left-hand side value.

Template Literal Types

Template Literal Types allow to manipulate string value at type level
and generate new string types based on existing ones. They are
useful to create more expressive and precise types from string-based
operations.

Function overloading

Function overloading allows you to define multiple function
signatures for the same function name, each with different
parameter types and return type. When you call an overloaded

const person: Person = {

 name: 'John',

};

console.log(person.address?.city); // undefined

const foo = null ?? 'foo';

console.log(foo); // foo

const baz = 1 ?? 'baz';

const baz2 = 0 ?? 'baz';

console.log(baz); // 1

console.log(baz2); // 0

type Department = 'engineering' | 'hr';

type Language = 'english' | 'spanish';

type Id = `${Department}-${Language}-id`; // "engineering-english-id

function, TypeScript uses the provided arguments to determine the
correct function signature:

Recursive Types

A Recursive Type is a type that can refer to itself. This is useful for
defining data structures that have a hierarchical or recursive
structure (potentially infinite nesting), such as linked lists, trees,
and graphs.

Recursive Conditional Types

It is possible to define complex type relationships using logic and
recursion in TypeScript. Let’s break it down in simple terms:

Conditional Types: allows you to define types based on boolean
conditions:

function makeGreeting(name: string): string;

function makeGreeting(names: string[]): string[];

function makeGreeting(person: unknown): unknown {

 if (typeof person === 'string') {

 return `Hi ${person}!`;

 } else if (Array.isArray(person)) {

 return person.map(name => `Hi, ${name}!`);

 }

 throw new Error('Unable to greet');

}

makeGreeting('Simon');

makeGreeting(['Simone', 'John']);

type ListNode<T> = {

 data: T;

 next: ListNode<T> | undefined;

};

type CheckNumber<T> = T extends number ? 'Number' : 'Not a number';

Recursion: means a type definition that refers to itself within its
own definition:

Recursive Conditional Types combine both conditional logic and
recursion. It means that a type definition can depend on itself
through conditional logic, creating complex and flexible type
relationships.

ECMAScript Module Support in Node.js

Node.js added support for ECMAScript Modules starting from
version 15.3.0, and TypeScript has had ECMAScript Module Support
for Node.js since version 4.7. This support can be enabled by using
the module property with the value nodenext in the tsconfig.json file.
Here’s an example:

type C ec u be e te ds u be u be ot a u be ;

type A = CheckNumber<123>; // 'Number'

type B = CheckNumber<'abc'>; // 'Not a number'

type Json = string | number | boolean | null | Json[] | { [key: stri

const data: Json = {

 prop1: true,

 prop2: 'prop2',

 prop3: {

 prop4: [],

 },

};

type Flatten<T> = T extends Array<infer U> ? Flatten<U> : T;

type NestedArray = [1, [2, [3, 4], 5], 6];

type FlattenedArray = Flatten<NestedArray>; // 2 | 3 | 4 | 5 | 1 | 6

{

 "compilerOptions": {

 "module": "nodenext",

Node.js supports two file extensions for modules: .mjs for ES
modules and .cjs for CommonJS modules. The equivalent file
extensions in TypeScript are .mts for ES modules and .cts for
CommonJS modules. When the TypeScript compiler transpiles
these files to JavaScript, it will create .mjs and .cjs files.

If you want to use ES modules in your project, you can set the type
property to “module” in your package.json file. This instructs
Node.js to treat the project as an ES module project.

Additionally, TypeScript also supports type declarations in .d.ts files.
These declaration files provide type information for libraries or
modules written in TypeScript, allowing other developers to utilize
them with TypeScript’s type checking and auto-completion features.

Assertion Functions

In TypeScript, assertion functions are functions that indicate the
verification of a specific condition based on their return value. In
their simplest form, an assert function examines a provided
predicate and raises an error when the predicate evaluates to false.

Or can be declared as function expression:

 "outDir": "./lib",

 "declaration": true

 }

}

function isNumber(value: unknown): asserts value is number {

 if (typeof value !== 'number') {

 throw new Error('Not a number');

 }

}

type AssertIsNumber = (value: unknown) => asserts value is number;

const isNumber: AssertIsNumber = value => {

 if (typeof value !== 'number') {

Assertion functions share similarities with type guards. Type guards
were initially introduced to perform runtime checks and ensure the
type of a value within a specific scope. Specifically, a type guard is a
function that evaluates a type predicate and returns a boolean value
indicating whether the predicate is true or false. This differs slightly
from assertion functions,where the intention is to throw an error
rather than returning false when the predicate is not satisfied.

Example of type guard:

Variadic Tuple Types

Variadic Tuple Types are a features introduces in TypeScript version
4.0, let’s start to learn them by revise what is a tuple:

A tuple type is an array which has a defined length, and were the
type of each element is known:

The term “variadic” means indefinite arity (accept a variable
number of arguments).

A variadic tuple is a tuple type which has all the property as before
but the exact shape is not defined yet:

 throw new Error('Not a number');

 }

};

const isNumber = (value: unknown): value is number => typeof value

type Student = [string, number];

const [name, age]: Student = ['Simone', 20];

type Bar<T extends unknown[]> = [boolean, ...T, number];

type A = Bar<[boolean]>; // [boolean, boolean, number]

type B = Bar<['a', 'b']>; // [boolean, 'a', 'b', number]

type C = Bar<[]>; // [boolean, number]

In the previous code we can see that the tuple shape is defined by
the T generic passed in.

Variadic tuples can accept multiple generics make them very
flexible:

With the new variadic tuples we can use:

The spreads in tuple type syntax can now be generic, so we can
represent higher-order operation on tuples and arrays even
when we do not know the actual types we are operating over.
The rest elements can occur anywhere in a tuple.

Example:

Boxed types

Boxed types refer to the wrapper objects that are used to represent
primitive types as objects. These wrapper objects provide additional
functionality and methods that are not available directly on the
primitive values.

type Bar<T extends unknown[], G extends unknown[]> = [...T, boolea

type A = Bar<[number], [string]>; // [number, boolean, string]

type B = Bar<['a', 'b'], [boolean]>; // ["a", "b", boolean, boolean]

type Items = readonly unknown[];

function concat<T extends Items, U extends Items>(

 arr1: T,

 arr2: U

): [...T, ...U] {

 return [...arr1, ...arr2];

}

concat([1, 2, 3], ['4', '5', '6']); // [1, 2, 3, "4", "5", "6"]

When you access a method like charAt or normalize on a string
primitive, JavaScript wraps it in a String object, calls the method,
and then throws the object away.

Demonstration:

TypeScript represents this differentiation by providing separate
types for the primitives and their corresponding object wrappers:

string => String
number => Number
boolean => Boolean
symbol => Symbol
bigint => BigInt

The boxed types are usually not needed. Avoid using boxed types
and instead use type for the primitives, for instance string instead
of String.

Covariance and Contravariance in
TypeScript

Covariance and Contravariance are used to describe how
relationships work when dealing with inheritance or assignment of
types.

Covariance means that a type relationship preserves the direction of
inheritance or assignment, so if a type A is a subtype of type B, then
an array of type A is also considered a subtype of an array of type B.
The important thing to note here is that the subtype relationship is

const originalNormalize = String.prototype.normalize;

String.prototype.normalize = function () {

 console.log(this, typeof this);

 return originalNormalize.call(this);

};

console.log('\u0041'.normalize());

maintained this means that Covariance accept subtype but doesn’t
accept supertype.

Contravariance means that a type relationship reverses the direction
of inheritance or assignment, so if a type A is a subtype of type B,
then an array of type B is considered a subtype of an array of type A.
The subtype relationship is reversed this means that Contravariance
accept supertype but doesn’t accept subtype.

Notes: Bivariance means accept both supertype & subtype.

Example: Let’s say we have a space for all animals and a separate
space just for dogs.

In Covariance, you can put all the dogs in the animals space because
dogs are a type of animal. But you cannot put all the animals in the
dog space because there might be other animals mixed in.

In Contravariance, you cannot put all the animals in the dogs space
because the animals space might contain other animals as well.
However, you can put all the dogs in the animal space because all
dogs are also animals.

// Covariance example

class Animal {

 name: string;

 constructor(name: string) {

 this.name = name;

 }

}

class Dog extends Animal {

 breed: string;

 constructor(name: string, breed: string) {

 super(name);

 this.breed = breed;

 }

}

let animals: Animal[] = [];

l t d D [] []

In TypeScript, type relationships for arrays are covariant, while type
relationships for function parameters are contravariant. This means
that TypeScript exhibits both covariance and contravariance,
depending on the context.

Optional Variance Annotations for Type
Parameters

As of TypeScript 4.7.0, we can use the out and in keywords to be
specific about Variance annotation.

For Covariant, use the out keyword:

And for Contravariant, use the in keyword:

let dogs: Dog[] = [];

// Covariance allows assigning subtype (Dog) array to supertype (Ani

animals = dogs;

dogs = animals; // Invalid: Type 'Animal[]' is not assignable to typ

// Contravariance example

type Feed<in T> = (animal: T) => void;

let feedAnimal: Feed<Animal> = (animal: Animal) => {

 console.log(`Animal name: ${animal.name}`);

};

let feedDog: Feed<Dog> = (dog: Dog) => {

 console.log(`Dog name: ${dog.name}, Breed: ${dog.breed}`);

};

// Contravariance allows assigning supertype (Animal) callback to su

feedDog = feedAnimal;

feedAnimal = feedDog; // Invalid: Type 'Feed<Dog>' is not assignable

type AnimalCallback<out T> = () => T; // T is Covariant here

type AnimalCallback<in T> = (value: T) => void; // T is Contravaria

Template String Pattern Index Signatures

Template string pattern index signatures allow us to define flexible
index signatures using template string patterns. This feature
enables us to create objects that can be indexed with specific
patterns of string keys, providing more control and specificity when
accessing and manipulating properties.

TypeScript from version 4.4 allows index signatures for symbols and
template string patterns.

The satisfies Operator

The satisfies allows you to check if a given type satisfies a specific
interface or condition. In other words, it ensures that a type has all
the required properties and methods of a specific interface. It is a
way to ensure a variable fits into a definition of a type Here is an
example:

const uniqueSymbol = Symbol('description');

type MyKeys = `key-${string}`;

type MyObject = {

 [uniqueSymbol]: string;

 [key: MyKeys]: number;

};

const obj: MyObject = {

 [uniqueSymbol]: 'Unique symbol key',

 'key-a': 123,

 'key-b': 456,

};

console.log(obj[uniqueSymbol]); // Unique symbol key

console.log(obj['key-a']); // 123

console.log(obj['key-b']); // 456

type Columns = 'name' | 'nickName' | 'attributes';

Type-Only Imports and Export

Type-Only Imports and Export allows you to import or export types
without importing or exporting the values or functions associated

yp | | ;

type User = Record<Columns, string | string[] | undefined>;

// Type Annotation using `User`

const user: User = {

 name: 'Simone',

 nickName: undefined,

 attributes: ['dev', 'admin'],

};

// In the following lines, TypeScript won't be able to infer properl

user.attributes?.map(console.log); // Property 'map' does not exist

user.nickName; // string | string[] | undefined

// Type assertion using `as`

const user2 = {

 name: 'Simon',

 nickName: undefined,

 attributes: ['dev', 'admin'],

} as User;

// Here too, TypeScript won't be able to infer properly

user2.attributes?.map(console.log); // Property 'map' does not exist

user2.nickName; // string | string[] | undefined

// Using `satisfies` operators we can properly infer the types now

const user3 = {

 name: 'Simon',

 nickName: undefined,

 attributes: ['dev', 'admin'],

} satisfies User;

user3.attributes?.map(console.log); // TypeScript infers correctly:

user3.nickName; // TypeScript infers correctly: undefined

with those types. This can be useful for reducing the size of your
bundle.

To use type-only imports, you can use the import type keyword.

TypeScript permits using both declaration and implementation file
extensions (.ts, .mts, .cts, and .tsx) in type-only imports, regardless
of allowImportingTsExtensions settings.

For example:

The following are supported forms:

using declaration and Explicit Resource
Management

A using declaration is a block-scoped, immutable binding, similar to
const, used for managing disposable resources. When initialized
with a value, the Symbol.dispose method of that value is recorded and
subsequently executed upon exiting the enclosing block scope.

This is based on ECMAScript’s Resource Management feature,
which is useful for performing essential cleanup tasks after object
creation, such as closing connections, deleting files, and releasing
memory.

Notes:

import type { House } from './house.ts';

import type T from './mod';

import type { A, B } from './mod';

import type * as Types from './mod';

export type { T };

export type { T } from './mod';

Due to its recent introduction in TypeScript version 5.2, most
runtimes lack native support. You’ll need polyfills for:
Symbol.dispose, Symbol.asyncDispose, DisposableStack,
AsyncDisposableStack, SuppressedError.
Additionally, you will need to configure your tsconfig.json as
follows:

Example:

The code will log:

1

2

{

 "compilerOptions": {

 "target": "es2022",

 "lib": ["es2022", "esnext.disposable", "dom"]

 }

}

//@ts-ignore

Symbol.dispose ??= Symbol('Symbol.dispose'); // Simple polify

const doWork = (): Disposable => {

 return {

 [Symbol.dispose]: () => {

 console.log('disposed');

 },

 };

};

console.log(1);

{

 using work = doWork(); // Resource is declared

 console.log(2);

} // Resource is disposed (e.g., `work[Symbol.dispose]()` is evaluat

console.log(3);

disposed

3

A resource eligible for disposal must adhere to the Disposable
interface:

The using declarations record resource disposal operations in a
stack, ensuring they are disposed in reverse order of declaration:

Resources are guaranteed to be disposed, even if subsequent code or
exceptions occur. This may lead to disposal potentially throwing an
exception, possibly suppressing another. To retain information on
suppressed errors, a new native exception, SuppressedError, is
introduced.

await using declaration

An await using declaration handles an asynchronously disposable
resource. The value must have a Symbol.asyncDispose method, which
will be awaited at the block’s end.

// lib.esnext.disposable.d.ts

interface Disposable {

 [Symbol.dispose](): void;

}

{

 using j = getA(),

 y = getB();

 using k = getC();

} // disposes `C`, then `B`, then `A`.

async function doWorkAsync() {

 await using work = doWorkAsync(); // Resource is declared

} // Resource is disposed (e.g., `await work[Symbol.asyncDispose]()`

For an asynchronously disposable resource, it must adhere to either
the Disposable or AsyncDisposable interface:

The code logs:

Doing some work...

Closing the connection...

Connection closed.

The using and await using declarations are allowed in Statements:
for, for-in, for-of, for-await-of, switch.

// lib.esnext.disposable.d.ts

interface AsyncDisposable {

 [Symbol.asyncDispose](): Promise<void>;

}

//@ts-ignore

Symbol.asyncDispose ??= Symbol('Symbol.asyncDispose'); // Simple pol

class DatabaseConnection implements AsyncDisposable {

 // A method that is called when the object is disposed asynchron

 [Symbol.asyncDispose]() {

 // Close the connection and return a promise

 return this.close();

 }

 async close() {

 console.log('Closing the connection...');

 await new Promise(resolve => setTimeout(resolve, 1000));

 console.log('Connection closed.');

 }

}

async function doWork() {

 // Create a new connection and dispose it asynchronously when it

 await using connection = new DatabaseConnection(); // Resource

 console.log('Doing some work...');

} // Resource is disposed (e.g., `await connection[Symbol.asyncDispo

doWork();

	The Concise TypeScript Book
	Translations
	Downloads
	Table of Content
	About the Author
	TypeScript Introduction
	What is TypeScript?
	Why TypeScript?
	TypeScript and JavaScript
	TypeScript Code Generation
	Modern JavaScript Now (Downleveling)

	Getting Started With TypeScript
	Installation
	Configuration
	TypeScript Configuration File ​​tsconfig.json
	Migration to TypeScript Advice

	Exploring the Type System
	The TypeScript Language Service
	Structural Typing
	TypeScript Fundamental Comparison Rules
	Types as Sets
	Assign a type: Type Declarations and Type Assertions
	Property Checking and Excess Property Checking
	Weak Types
	Strict Object Literal Checking (Freshness)
	Type Inference
	More Advanced Inferences
	Type Widening
	Const
	Explicit Type Annotation
	Type Narrowing

	Primitive Types
	string
	boolean
	number
	bigInt
	Symbol
	null and undefined
	Array
	any

	Type Annotations
	Optional Properties
	Readonly Properties
	Index Signatures
	Extending Types
	Literal Types
	Literal Inference
	strictNullChecks
	Enums
	Numeric enums
	String enums
	Constant enums
	Reverse mapping
	Ambient enums
	Computed and constant members

	Narrowing
	typeof type guards
	Truthiness narrowing
	Equality narrowing
	In Operator narrowing
	instanceof narrowing

	Assignments
	Control Flow Analysis
	Type Predicates
	Discriminated Unions
	The never Type
	Exhaustiveness checking
	Object Types
	Tuple Type (Anonymous)
	Named Tuple Type (Labeled)
	Fixed Length Tuple
	Union Type
	Intersection Types
	Type Indexing
	Type from Value
	Type from Func Return
	Type from Module
	Mapped Types
	Mapped Type Modifiers
	Conditional Types
	Distributive Conditional Types
	infer Type Inference in Conditional Types
	Predefined Conditional Types
	Template Union Types
	Any type
	Unknown type
	Void type
	Never type
	Interface and Type
	Common Syntax
	Basic Types
	Objects and Interfaces
	Union and Intersection Types

	Built-in Type Primitives
	Common Built-in JS Objects
	Overloads
	Merging and Extension
	Differences between Type and Interface
	Class
	Class Common Syntax
	Constructor
	Private and Protected Constructors
	Access Modifiers
	Get & Set
	Auto-Accessors in Classes
	this
	Parameter Properties
	Abstract Classes
	With Generics
	Decorators
	Inheritance
	Statics
	Property initialization
	Method overloading

	Generics
	Generic Type
	Generic Classes
	Generic Constraints
	Generic contextual narrowing

	Erased Structural Types
	Namespacing
	Symbols
	Triple-Slash Directives
	Type Manipulation
	Creating Types from Types
	Indexed Access Types
	Utility Types

	Others
	Errors and Exception Handling
	Mixin classes
	Asynchronous Language Features
	Iterators and Generators
	TsDocs JSDoc Reference
	@types
	JSX
	ES6 Modules
	ES7 Exponentiation Operator
	The for-await-of Statement
	New.target
	Dynamic Import Expressions
	“tsc –watch”
	Non-null Assertion Operator (Postfix !)
	Defaulted declarations
	Optional Chaining
	Nullish coalescing operator (??)
	Template Literal Types
	Function overloading
	Recursive Types
	Recursive Conditional Types
	ECMAScript Module Support in Node.js
	Assertion Functions
	Variadic Tuple Types
	Boxed types
	Covariance and Contravariance in TypeScript
	Template String Pattern Index Signatures
	The satisfies Operator
	Type-Only Imports and Export
	using declaration and Explicit Resource Management

