THE
PYTHON
HANDBOOK

Flavio Copes

Table of Contents

Introduction

Preface

Introduction to Python
Installing Python
Running Python programs
Python 2 vs Python 3
The basics of working with Python
Data types

Operators

The Ternary Operator
Strings

Booleans

Numbers

Constants

Enums

User Input

Control statements
Lists

Tuples

Dictionaries

Sets

Functions

Objects

Loops

file:///private/var/folders/tn/h8lfq1sj7c33c0p30qgkd3mw0000gn/C/calibre_4.11.2_tmp_pA80hj/mNlAux_pdf_out/README/index.html

Classes

Modules

The Python Standard Library
The PEP8 Python style guide
Debugging

Variables scope

Accept arguments from the command line
Lambda functions

Recursion

Nested functions

Closures

Decorators

Docstrings

Introspection

Annotations

Exceptions

The with statement

Installing 3rd party packages using pip
List comprehensions
Polymorphism

Operator Overloading

Virtual Environments

Conclusion

Introduction

The Python Handbook follows the 80/20 rule: learn
80% of the topic in 20% of the time.

| find this approach gives a well-rounded overview.

This book does not try to cover everything under the
sun related to Python. It focuses on the core of the
language, trying to simplify the more complex topics.

| hope the contents of this book will help you achieve
what you want: learn the basics of Python.

This book is written by Flavio. | publish web
development tutorials every day on my website
flaviocopes.com.

You can reach me on Twitter @flaviocopes.

Enjoy!

https://flaviocopes.com/
https://twitter.com/flaviocopes

Introduction to Python

Python is literally eating the programming world. It is
growing in popularity and usage in ways that are pretty
much unprecedented in the history of computers.

There is a huge variety of scenarios that Python
excels in. Shell scripting, task automation, Web
development are just some basic examples.

Python is the language of choice for data analysis
and machine learning, but it can also adapt to create
games and work with embedded devices.

Most importantly, it's the language of choice for
introductory computer science courses in
universities all around the world.

Many students learn Python as their first programming
language. Many are learning it right now, many will
learn it in the future. And for many of them, Python will
be the only programming language they need.

Thanks to this unique position, Python is likely going
to grow even more in the future.

The language is simple, expressive, and it's quite
straightforward.

The ecosystem is huge. There seems to be a library
for everything you can imagine.

Python is a high-level programming language suitable
for beginners thanks to its intuitive syntax, its huge
community and vibrant ecosystem.

It is also appreciated by professionals across many
different fields.

Technically speaking it is an interpreted language that
does not have an intermediate compilation phase like
a compiled language, for example C or Java.

And like many interpreted languages, it is dynamically
typed, which means that you do not have to indicate
the types of the variables you use, and variables are
not tied to a specific type.

This has pros and cons. In particular we can mention
that you write programs faster, but on the other hand
you have less help from the tools to prevent possible
bugs and you will find out about some kinds of issues
only by executing the program at runtime.

Python supports a wide variety of different
programming paradigms, including procedural
programming, object oriented programming and
functional programming. It's flexible enough to adapt
to a lot of different needs.

Created in 1991 by Guido van Rossum, it's been rising
in popularity - especially in the past 5 years, as this
Google Trends infographic shows:

® Python
Programming language

= Worldwide, 2004 - present

Interest over time

Starting with Python is very easy. All you need is to
install the official package from python.org, for
Windows, macOS or Linux, and you're ready to go.

If you are new to programming, in the following posts |
will guide you to go from zero to becoming a Python
programmer.

And even if you are currently a programmer
specialized into another language, Python is a
language worth knowing because | think we're just at
the start.

Lower level languages like C++ and Rust might be
great for expert programmers, but daunting to begin,
and they take a long time to master. Python, on the
other hand, is a programming language for
programmers, of course, but also for the non-
programmers. The students, the people doing their
day job with Excel, the scientists.

The language everyone interested in coding
should learn first.

Installing Python

Go to https://www.python.org, choose the Downloads
menu, choose your operating system and a panel with
a link to download the official package will appear:

Ahant (] 5 Darurmeantatian Comrmunity

Bl releases
Download for Mac 05 X
Source cade

Python | wude

Fython 3.8.0

MarGoX
Release Date: Ot

Ocher Flatiorms
This |s the stal eange

e — = tinns,
Altzrnative impiementations

dafault ta the & dows, The nstaler now alss actively ¢isallaws installation on Windews 7,

Make sure you follow the specific instructions for your
operating system. On macOS you can find a detailed
guide on https://flaviocopes.com/python-installation-
macos/.

https://www.python.org/
https://flaviocopes.com/python-installation-macos/

Running Python
programs

There are a few different ways to run Python
programs.

In particular, you have a distinction between using
interactive prompts, where you type Python code and
it's immediately executed, and saving a Python
program into a file, and executing that.

Let's start with interactive prompts.

If you open your terminal and type python , you will
see a screen like this:

[N] flavio — python fUsersiflavio — Pytho
= ~ python
Python 3.9.8 (v3.9.@:9cf6752276, Oct 5 2020, 11
[Clang 6.9 (clang-6@8.@.57)] on darwin
Type "help", "copyright", "credits" or "license" for more information.

This is the Python REPL (Read-Evaluate-Print-Loop)

Notice the >>> symbol, and the cursor after that. You
can type any Python code here, and press the enter
key to run it.

For example try defining a new variable using

name = "Flavio"

and then print its value, using print() :

print(name)

D@ ®

+ ~ python

Python 3.9.@ (v3.9.0:9cf6752276, Oct 5 2020, 11:29:23)

[Clang 6.8 (clang-G60@.@.57)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
»>>> name = "Flavio"

=»> print(nome)

Flavic
e

Note: in the REPL, you can also just type name ,
press the enter Kkey and you'll get the value
back. But in a program, you are not going to see
any output if you do so - you need to use

print() instead.

Any line of Python you write here is going to be
executed immediately.

Type quit() to exit this Python REPL.

You can access the same interactive prompt using the
IDLE application that's installed by Python
automatically:

[JoN) Python 3.9.0 Shell

Python 3.9.8 (v3.9.8:9cf6752276, Oct 5 2028, 11:29:23)
[Clang 6.8 (clang-688.8.57)] on darwin

Type "help", "copyright", "credits" or "license()" for more information.
»>»>> name = "Flavio"

»»> print{name)

Flavio

PSS

Ln:7 Col: 4

This might be more convenient for you because with
the mouse you can move around and copy/paste more
easily than with the terminal.

Those are the basics that come with Python by
default. However | recommend to install |Python,
probably the best command line REPL application you
can find.

Install it with

pip install ipython

Make sure the pip binaries are in your path, then run
ipython :

py ', 'credits' or 'license' for more information
IPython 7.19.8 -- An enhanced Interactive Python. Type '?' for help.

name = "Roger”

name
'Roger'

age =

age
=

ipython is another interface to work with a Python
REPL, and provides some nice features like syntax
highlighting, code completion, and much more.

The second way to run a Python program is to write
your Python program code into a file, for example

program.py :

https://ipython.org/

*e ol Ry 310
GNU nano 2.8.6 program.py Modified

name = "Flavio"
print(nume)l

[Read 2 lines]
¢ Get Help @ WriteOut 8 Read File@i Prev Pogeldd Cut Text Cur Pos
Exit Justify Where Is @ Mext Pagegl UnCut Te: To Spell

and then run it with python program.py

N =R . oyt
python python program.py

Flavio

-+ python

Note that we save Python programs with the .py
extension, that's a convention.

In this case the program is executed as a whole, not
one line at a time. And that's typically how we run
programs.

We use the REPL for quick prototyping and for
learning.

On Linux and macOS a Python program can also be
transformed into a shell script, by prepending all its
content with a special line that indicates which
executable to use to run it.

On my system the Python executable is located in
/usr/bin/python3 , SO | type #!/usr/bin/python3 in
the first line:

* e python — nal)] Fax12
GNU nono 2.8.6 : Modified

#!/usr/bin/python3
nome = "Flavio"
print{name)

Get Help E WriteOut Read Filem Prev Paged Cut Text M8 Cur Pos

Exit Justify @ Where Is Next Pagegll UnCut Te To Spell

Then | can set execution permission on the file:

chmod u+x program.py

and | can run the program with

./program.py

{ X B python — fish | f
python ./program.py
Flavio

<= python I

This is especially useful when you write scripts that
interact with the terminal.

We have many other ways to run Python programs.

One of them is using VS Code, and in particular the
official Python extension from Microsoft:

Dataits Fostu

Python extension for Visual Studio Code

After installing this extension you will have Python
code autocompletion and error checking, automatic
formatting and code linting with pylint , and some
special commands, including:

Python: Start REPL to run the REPL in the integrated
terminal:

Python 3.8.0 G4-hit Ln3 Col1 Spacesi2 UTF-B LF Python A 0

Python: Run Python File in Terminal to run the
current file in the terminal:

9z Pythan

Aython 390 84-blt (Z 0 A0 - UTF-8 LF Pyihon S (L

Python: Run Current File in Python Interactive
Window:

name = Li
print(name)

Aython 390 84-blt @ 0A0 - UTF-8 LF Pyihon S (L

and many more. Just open the command palette
(View -> Command Palette, or Cmd-Shift-P) and type
python to see all the Python-related commands:

280

% program.py =python

name
print

Pythen: Run All Tests

Python: Run Current Test File

Python: Run Failed Tests

Python: Run Linting

Python: Run Pythan File in Terminal pythi

Aython 3.9.0 G4-blt & E: UTF-8 LF Python G (L

Another way to easily run Python code is to use repl.it,
a very nice website that provides a coding
environment you can create and run your apps on, in
any language, Python included:

wes ¢ dobs Sleg Friong Tam

Code, create, and
learn together

Signup (it's free), then under "create a repl" click
Python:

and you will be immediately shown an editor with a
main.py file, ready to be filled with a lot of Python
code:

Once you have some code, click "Run" to run it on the

right side of the window:

| think repl.it is handy because:

» you can easily share code just by sharing the link

« multiple people can work on the same code

« it can host long-running programs

« you can install packages

« it provides you a key-value database for more
complex applications

Python 2 vs Python 3

One key topic to talk about, right from the start, is the
Python 2 vs Python 3 discussion.

Python 3 was introduced in 2008, and it's been in
development as the main Python version, while
Python 2 continued being maintained with bug fixes
and security patches until early 2020.

On that date, Python 2 support was discontinued.

Many programs are still written using Python 2, and
organizations still actively work on those, because the
migration to Python 3 is not trivial and those programs
would require a lot of work to upgrade those
programs. And large and important migrations always
introduce new bugs.

But new code, unless you have to adhere to rules set
by your organization that forces Python 2, should
always be written in Python 3.

This book focuses on Python 3.

The basics of working
with Python

Variables

We can create a new Python variable by assigning a
value to a label, using the = assignment operator.

In this example we assign a string with the value
"Roger" to the name label:

name = "Roger"

Here's an example with a number:

age =

A variable name can be composed by characters,
numbers, the underscore character. It can't start

with a number. These are all valid variable names:

namel
AGE

aGE
alllll
my_name
_name

These are invalid variable names:

test!
names

Other than that, anything is valid unless it's a Python
keyword. There are some keywords like for , if ,
while , import and more.

There's no need to memorize them, as Python will
alert you if you use one of those as a variable, and
you will gradually recognize them as part of the
Python programming language syntax.

Expressions and
statements

We can expression any sort of code that returns a
value. For example

+
"Roger"

A statement on the other hand is an operation on a
value, for example these are 2 statements:

name = "Roger"
print(name)

A program is formed by a series of statements. Each
statement is put on its own line, but you can use a
semicolon to have more than one statement on a
single line:

name = "Roger"; print(name)

Comments

In a Python program, everything after a hash mark is
ignored, and considered a comment:

name = "Roger"

Indentation

Indentation in Python is meaningful.

You cannot indent randomly like this:

name = "Flavio"
print(name)

Some other languages do not have meaningful
whitespace, but in Python, indentation matters.

In this case, if you try to run this program you would
get a IndentationError: unexpected indent error,
because indenting has a special meaning.

Everything indented belongs to a block, like a control
statement or conditional block, or a function or class
body. We'll see more about those later on.

Data types

Python has several built-in types.

If you create the name variable assigning it the value
"Roger", automatically this variable is now
representing a String data type.

name = "Roger"

You can check which type a variable is using the
type() function, passing the variable as an
argument, and then comparing the result to str :

name = "Roger"
type(name) == str #True

Or using isinstance() :

name = "Roger"
isinstance(name, str) #True

Notice that to see the True value in Python,
outside of a REPL, you need to wrap this code
inside print() , but for clarity reasons | avoid
using it

We used the str class here, but the same works for

other data types.

First, we have numbers. Integer numbers are
represented using the int class. Floating point
numbers (fractions) are of type float :

age =
type(age) == int

fraction =
type(fraction) == float

You saw how to create a type from a value literal, like
this:

name = "Flavio"
age =

Python automatically detects the type from the value
type.

You can also create a variable of a specific type by
using the class constructor, passing a value literal or a
variable name:

name = str("Flavio")
anotherName = str(name)

You can also convert from one type to another by
using the class constructor. Python will try to
determine the correct value, for example extracting a
number from a string:

age = int("20")
print(age)

fraction =
intFraction = int(fraction)
print(intFraction)

This is called casting. Of course this conversion might
not always work depending on the value passed. If
you write test instead of 20 in the above string,
you'll get a VvalueError: invalid literal for int()
with base 10: 'test' error.

Those are just the basics of types. We have a lot more
types in Python:

o complex for complex numbers
e bool for booleans

o list for lists

e tuple fortuples

e range forranges

e dict for dictionaries

set for sets

and more!

We'll explore them all soon.

Operators

Python operators are symbols that we use to run
operations upon values and variables.

We can divide operators based on the kind of
operation they perform:

» assignment operator

arithmetic operators

comparison operators

logical operators

bitwise operators

plus some interesting ones like is and in .

Assignment operator

The assignment operator is used to assign a value to
a variable:

age =

Or to assign a variable value to another variable:

age =
anotherVariable = age

Since Python 3.8, the := walrus operator is used to
assign a value to a variable as part of another
operation. For example inside an if or in the
conditional part of a loop. More on that later.

Arithmetic operators

Python has a number of arithmetic operators: + , -,

X

x / (division), % (remainder), *k
(exponentiation) and // (floor division):

+ #2
-1 #1
* 2 #4
/ 2 #2
% #1
*xk 2 #16
/] 2 #2

Note that you don't need a space between the
operands, but it's good for readability.

- also works as a unary minus operator:

print(-4) #-4

+ is also used to concatenate String values:

"Roger" + is a good dog"

#Roger is a good dog

We can combine the assignment operator with
arithmetic operators:

..and so on

Example:

age =
age +=

Comparison operators

Python defines a few comparison operators:

o >
L[] >=
° <=

You can use those operators to get a boolean value
(True or False) depending on the result:

(on
1

Q0 U 9 W
\%
o

Boolean operators

Python gives us the following boolean operators:

e not
e and

e Or

When working with True or False attributes, those
work like logical AND, OR and NOT, and are often
used in the if conditional expression evaluation:

True
False

conditionl
condition?2

not conditionl
conditionl and condition2
conditionl or condition2

Otherwise, pay attention to a possible source of
confusion.

or used in an expression returns the value of the
first operand that is not a falsy value (False , o ,
**, [1 ..). Otherwise it returns the last operand.

print(? or 1)

(

print(False or 'hey')
print('hi' or 'hey')
print([] or False)
print(False or [])

The Python docs describe it as if x is false, then

y, else x .

and only evaluates the second argument if the first
one is true. So if the first argument is falsy (False ,
o, '', [1.),itreturns that argument. Otherwise it
evaluates the second argument:

and 1)

and 0)
False and 'hey')
'hi' and 'hey')
[1 and False)
False and [])

print
print
print
print
print
print

P

The Python docs describe it as if x is false, then

x, else y .

Bitwise operators

Some operators are used to work on bits and binary
numbers:

& performs binary AND

| performs binary OR

~ performs a binary XOR operation

~ performs a binary NOT operation

<< shift left operation

>> shift right operation

Bitwise operators are rarely used, only in very specific
situations, but they are worth mentioning.

1s and 1n

is is called the identity operator. It is used to
compare two objects and returns true if both are the
same object. More on objects later.

in is called the membership operator. Is used to
tell if a value is contained in a list, or another
sequence. More on lists and other sequences later.

The Ternary Operator

The ternary operator in Python allows you to quickly
define a conditional.

Let's say you have a function that compares an age
variable to the 18 value, and return True or False
depending on the result.

Instead of writing:

def
if age >
return True
else:
return False

You can implement it with the ternary operator in this
way:

def
return True if age > else False

First you define the result if the condition is True, then
you evaluate the condition, then you define the result if
the condition is false:

<result_if_true> if <condition> else <result_if_fal:

Strings

A string in Python is a series of characters enclosed
into quotes or double quotes:

"Roger"
'Roger’

You can assign a string value to a variable:

name = "Roger"

You can concatenate two strings using the +
operator:

phrase = "Roger" + is a good dog"

You can append to a string using +=:

name = "Roger"
name += " is a good dog"

print(name)

You can convert a number to a string using the str
class constructor:

str(s)

This is essential to concatenate a number to a string:

print("Roger is " + str(8) + " years old")

A string can be multi-line when defined with a special
syntax, enclosing the string in a set of 3 quotes:

print("""Roger is
8

years old
IIIIII)

print(
Roger is

8
years old
vt
A string has a set of built-in methods, like:

o isalpha() to check if a string contains only
characters and is not empty

isalnum() to check if a string contains

characters or digits and is not empty

o isdecimal() to check if a string contains digits
and is not empty

« lower() to geta lowercase version of a string

o islower() to check if a string is lowercase

« upper() to getan uppercase version of a string

» isupper() to check if a string is uppercase

« title() to geta capitalized version of a string

e startsswith() to check if the string starts with a
specific substring

endswith() to check if the string ends with a
specific substring

replace() to replace a part of a string

split() to split a string on a specific character
separator

strip() to trim the whitespace from a string

join() to append new letters to a string

find() to find the position of a substring
and many more.

None of those methods alter the original string. They
return a new, modified string instead. For example:

name = "Roger"
print(name. lower())
print(name)

You can use some global functions to work with
strings, too.

In particular | think of 1en() , which gives you the
length of a string:

name = "Roger"
print(len(name))

The in operator lets you check if a string contains a
substring:

name = "Roger"
print("ger" in name)

Escaping is a way to add special characters into a
string.

For example, how do you add a double quote into a
string that's wrapped into double quotes?

name = "Roger"

"Ro"Ger" will not work, as Python will think the string
ends at "Ro" .

The way to go is to escape the double quote inside the
string, with the \ backslash character:

name = "Ro\'"ger"

This applies to single quotes too \' , and for special
formatting characters like \t fortab, \n for new line
and \\ for the backslash.

Given a string, you can get its characters using square
brackets to get a specific item, given its index, starting
from O:

name = "Roger"
name [0]
name[1]
name[2]

Using a negative number will start counting from the
end:

name = "Roger"
name [-1]

You can also use a range, using what we call slicing:

name = "Roger"
namel[0:2]
namel[:2]

name[2:]

Booleans

Python provides the bool type, which can have two
values: True and False (capitalized)

False
True

done
done

Booleans are especially useful with conditional control
structures like if statements:

done = True
if done:

else:

When evaluating a value for True or False , if the
value is not a bool we have some rules depending
on the type we're checking:

e numbers are always True unless for the number
0

» strings are False only when empty

o lists, tuples, sets, dictionaries are False only
when empty

You can check if a value is a boolean in this way:

done = True
type(done) == bool

Or using isinstance() , passing 2 arguments: the
variable, and the bool class:

done = True
isinstance(done, bool)

The global any() function is also very useful when
working with booleans, as it returns True if any of the
values of the iterable (list, for example) passed as
argument are True :

True
False

book_1_read
book_2_read

read_any_book = any([book_1_read, book_2_read])

The global ali() function is same, but returns True
if all of the values passed to it are True :

ingredients_purchased = True
meal_cooked = False

ready_to_serve = all([ingredients_purchased, meal_c«

Numbers

Numbers in Python can be of 3 types: int , float
and complex .

Integer numbers

Integer numbers are represented using the int
class. You can define an integer using a value literal:

age =

You can also define an integer number using the
int() constructor:

age = int(3)

To check if a variable is of type int , you can use the
type() global function:

type(age) == int

Floating point numbers

Floating point numbers (fractions) are of type float .
You can define an integer using a value literal:

fraction =

Or using the float() constructor:

fraction = float()

To check if a variable is of type float , you can use
the type() global function:

type(fraction) == float

Complex numbers

Complex numbers are of type complex .

You can define them using a value literal:

complexNumber = 2+

or using the complex() constructor:

complexNumber = complex(2, 3)

Once you have a complex number, you can get its real
and imaginary part:

complexNumber.real
complexNumber. imag

Again, to check if a variable is of type complex , you
can use the type() global function:

type(complexNumber) == complex

Arithmetic operations on numbers

You can perform arithmetic operations on numbers,
using the arithmetic operators: + , -, x , /
(division), % (remainder), =x (exponentiation) and
// (floor division):

° /=

o —
o %=

e ..and soon

to quickly perform operations on variables, too:

age =
age +=

Built-in Functions

There are 2 built-in functions that help with numbers:
abs() returns the absolute value of a number.

round() given a number, returns its value rounded to
the nearest integer:

round ()

You can specify a second parameter to set the

decimal points precision:

round (, 1)

Several other math utility functions and constants are

provided by the Python standard library:

the math package provides general math
functions and constants

the cmath package provides utilities to work with
complex numbers.

the decimal package provides utilities to work
with decimals and floating point numbers.

the fractions package provides utilities to work
with rational numbers

We'll explore some of those separately later on.

Constants

Python has no way to enforce a variable to be a
constant.

The nearest you can go is to use an enum:

class
WIDTH =
HEIGHT =

And get to each value using for example
Constants.WIDTH.value .

No one can reassign that value.

Otherwise if you want to rely on naming conventions,
you can adhere to this one: declare variables that
should never change uppercase:

WIDTH =

No one will prevent to overwrite this value, and Python
will not stop it.

That's what does most Python code you will see.

Enums

Enums are readable names that are bound to a
constant value.

To use enums, import Enum from the enum standard
library module:

from enum import Enum

Then you can initialize a new enum in this way:

class
INACTIVE =
ACTIVE =

Once you do so, you can reference State.INACTIVE
and State.ACTIVE , and they serve as constants.

Now if you try to print State.ACTIVE for example:

print(State.ACTIVE)

it will not return 1 , but State.ACTIVE .

The same value can be reached by the number
assigned in the enum: print(State(1)) will return
State.ACTIVE . Same for using the square brackets
notation State['ACTIVE'] .

You can however get the value using
State.ACTIVE.value .

You can list all the possible values of an enum:

list(State) # [<State.INACTIVE: 0>, <State.ACTIVE:

You can count them:

len(State) # 2

User Input

In a Python command line application you can display
information to the user using the print() function:

name = "Roger"
print(name)

We can also accept input from the user, using
input() :

print('What is your age?')
age = input()
print('Your age is ' + age)

This approach gets input at runtime, meaning the
program will stop execution and will wait until the user
types something and presses the enter key.

You can also do more complex input processing and
accept input at program invocation time, and we'll see
how to do that later on.

This works for command line applications. Other kinds
of applications will need a different way of accepting
input.

Control statements

What's interesting to do with booleans, and
expressions that return a boolean in particular, is that
we can make decisions and take different roads
depending on their True or False value.

In Python we do so using the if statement:

condition = True

if condition == True:

When the condition test resolves to True , like in the
above case, its block gets executed.

What is a block? A block is that part that is indented
one level (4 spaces usually) on the right:

condition = True

if condition == True:
print("The condition")
print(“was true")

The block can be formed by a single line, or multiple
lines as well, and it ends when you move back to the
previous indentation level:

condition = True

if condition == True:
print("The condition")
print(“was true")

print("Outside of the if")

In combination with if you can have an else block,
that's executed if the condition test of if results to

False .

condition = True

if condition == True:
print("The condition")
print("was True")
else:
print("The condition")
print("was False")

And you can have different linked if checks with
elif , that's executed if the previous check was

False .

condition = True
name = "Roger"

if condition == True:
print("The condition")
print("was True")

elif name == "Roger":
print("Hello Roger")

else:
print("The condition")
print("was False")

The second block in this case is executed if
condition iS False , and the name variable value is
"Roger".

Ina if statement you can have just one if and
else checks, but multiple series of elif checks:

condition = True
name = "Roger"

if condition == True:
print("The condition")
print("was True")

elif name == "Roger":
print("Hello Roger")

elif name == "Syd":
print("Hello Syd")

elif name == "Flavio":
print("Hello Flavio")

else:
print("The condition")
print("was False")

if and else can also be used in an inline format,
which lets us return a value or another based on a
condition.

Example:

a =
result = if a == else
print(result) # 3

Lists

Lists are an essential Python data structure.

The allow you to group together multiple values and
reference them all with a common name.

For example:

dogs = ["Roger", "Syd"]

A list can hold values of different types:

items = ["Roger", 1, "Syd", Truel

You can check if an item is contained into a list with
the in operator:

print("Roger" in items)

A list can also be defined as empty:

items = []

You can reference the items in a list by their index,
starting from zero:

items[0]
items[1]
items[3]

Using the same notation you can change the value
stored at a specific index:

items[02] = "Roger"

You can also use the index() method:

items.index(0)
items.index(1)

As with strings, using a negative index will start
searching from the end:

items[-1]

You can also extract a part of a list, using slices:

items[0:2]
items[2:]

Get the number of items contained in a list using the
len() global function, the same we used to get the
length of a string:

len(items)

You can add items to the list by using a list append()
method:

items.append("Test")

or the extend() method:

items.extend(["Test"])

You can also use the += operator:

items += ["Test"]

items is ['Roger', 1, 'Syd', True, 'Test'l]

Tip: with extend() or += don't forget the square
brackets. Don't do items += "Test" or

items.extend("Test") or Python will add 4

individual characters to the list, resulting in
['Roger', 1, 'Syd', True, 'T', 'e', 's', 't']

Remove an item using the remove() method:

items.remove("Test")

You can add multiple elements using

items += ["Testl", "Test2"]
#or

items.extend(["Test1l", "Test2"]1)

These append the item to the end of the list.

To add an item in the middle of a list, at a specific
index, use the insert() method:

items.insert("Test", 1) # add "Test" at index 1

To add multiple items at a specific index, you need to
use slices:

items[1:1] = ["Testl", "Test2"]

Sort a list using the sort() method:

items.sort()

Tip: sort() will only work if the list holds values that
can be compared. Strings and integers for
example can't be compared, and you'll get an
error like TypeError: '<' not supported between

instances of 'int' and 'str' if you try.

The sort() methods orders uppercase letters first,
then lowercased letters. To fix this, use:

items.sort(key=str.lower)

instead.

Sorting modifies the original list content. To avoid that,
you can copy the list content using

itemscopy = items|[:]

or use the sorted() global function:

print(sorted(items, key=str.lower))

that will return a new list, sorted, instead of modifying
the original list.

54

Tuples

Tuples are another fundamental Python data structure.

They allow you to create immutable groups of objects.
This means that once a tuple is created, it can't be
modified. You can't add or remove items.

They are created in a way similar to lists, but using
parentheses instead of square brackets:

names = ("Roger", '"Syd")

A tuple is ordered, like a list, so you can get its values
referencing an index value:

names [0]
names [1]

You can also use the index() method:

names. index('Roger")
names.index('Syd")

As with strings and lists, using a negative index will
start searching from the end:

names [-1]

You can count the items in a tuple with the 1en()
function:

len(names)

You can check if an item is contained into a tuple with
the in operator:

print("Roger" in names)

You can also extract a part of a tuple, using slices:

names[0:2]
names[1:]

Get the number of items in a tuple using the 1en()
global function, the same we used to get the length of
a string:

len(names)

You can create a sorted version of a tuple using the
sorted() global function:

sorted(names)

You can create a new tuple from existing tuples using
the + operator:

newTuple = names + ("Vanille", "Tina")

Dictionaries

Dictionaries are a very important Python data
structure.

While lists allow you to create collections of values,
dictionaries allow you to create collections of key /
value pairs.

Here is a dictionary example with one key/value pair:

dog = { 'name': 'Roger' }

The key can be any immutable value like a string, a
number or a tuple. The value can be anything you
want.

A dictionary can contain multiple key/value pairs:

dog = { 'name': 'Roger', 'age': }

You can access individual key values using this
notation:

dog['name"']
dog['age'l

Using the same notation you can change the value
stored at a specific index:

dog['name'] = 'Syd'

And another way is using the get() method, which
has an option to add a default value:

dog.get('name")
dog.get('test', 'default')

The pop() method retrieves the value of a key, and
subsequently deletes the item from the dictionary:

dog.pop('name"')

The popitem() method retrieves and removes the
last key/value pair inserted into the dictionary:

dog.popitem()

You can check if a key is contained into a dictionary
with the in operator:

‘name' in dog

Get a list with the keys in a dictionary using the
keys() method, passing its result to the 1ist()
constructor:

list(dog.keys())

Get the values using the values() method, and the
key/value pairs tuples using the items() method:

print(list(dog.values()))

print(list(dog.items()))

Get a dictionary length using the 1en() global
function, the same we used to get the length of a
string or the items in a list:

len(dog)

You can add a new key/value pair to the dictionary in
this way:

dog['favorite food']l = 'Meat’

You can remove a key/value pair from a dictionary
using the del statement:

del dog['favorite food']

To copy a dictionary, use the copy() method:

dogCopy = dog.copy()

Sets

Sets are another important Python data structure.

We can say they work like tuples, but they are not
ordered, and they are mutable. Or we can say they
work like dictionaries, but they don't have keys.

They also have an immutable version, called

frozenset .

You can create a set using this syntax:

names = {"Roger", "Syd"}

Sets work well when you think about them as
mathematical sets.

You can intersect two sets:

setl
set2

{IIROger_II , ||Syd||}_
{“Roger“}

intersect = setl & set2

You can create a union of two sets:

setl = {"Roger", "Syd"}
set2 = {"Luna"}

union = setl | set2

You can get the difference between two sets:

setl = {"Roger", "Syd"}
set2 = {"Roger"}

difference = setl - set2

You can check if a set is a superset of another (and of
course if a set is a subset of another)

setl = {"Roger", "Syd"}
set2 = {"Roger"}

isSuperset = setl > set2

You can count the items in a set with the 1len()
global function:

names = {"Roger", "Syd"}
len(names)

You can get a list from the items in a set by passing
the set to the 1list() constructor:

names = {"Roger", "Syd"}
list(names)

You can check if an item is contained into a set with
the in operator:

print("Roger" in names)

Functions

A function lets us create a set of instructions that we
can run when needed.

Functions are essential in Python and in many other
programming languages to create meaningful
programs, because they allow us to decompose a
program into manageable parts, they promote
readability and code reuse.

Here is an example function called hello that prints
"Hello!":

def :
print('Hello!")

This is the function definition. Thereis a name
(hello) and a body, the set of instructions, which is
the part that follows the colon and it's indented one
level on the right.

To run this function, we must call it. This is the syntax
to call the function:

hello()

We can execute this function once, or multiple times.

The name of the function, hello , is very important. It
should be descriptive, so anyone calling it can imagine
what the function does.

A function can accept one or more parameters:

def hello(name):
print('Hello

+ name + '!")

In this case we call the function passing the argument

hello('Roger")

We call parameters the values accepted by the
function inside the function definition, and
arguments the values we pass to the function
when we call it. It's common to get confused about
this distinction.

An argument can have a default value that's applied if
the argument is not specified:

def hello(name='my friend'):
print('Hello ' + name + '!")

hello()
#Hello my friend!

Here's how we can accept multiple parameters:

def hello(name, age):
print('Hello ' + name + ', you are ' + str(age)

In this case we call the function passing a set of
arguments:

hello('Roger', 8)

Parameters are passed by reference. All types in
Python are objects but some of them are immutable,
including integers, booleans, floats, strings, and
tuples. This means that if you pass them as
parameters and you modify their value inside the
function, the new value is not reflected outside of the
function:

def
value =

val =
change(val)

print(val)

If you pass an object that's not immutable, and you
change one of its properties, the change will be
reflected outside.

A function can return a value, using the return
statement. For example in this case we return the
name parameter name:

def

print('Hello ' + name + '!")

return name

When the function meets the return statement, the
function ends.

We can omit the value:

def :
print('Hello ' + name + '!")
return

We can have the return statement inside a conditional,
which is a common way to end a function if a starting
condition is not met:

def -
if not name:

return
print('Hello ' + name + '!")

If we call the function passing a value that evaluates to
False , like an empty string, the function is terminated
before reaching the print() statement.

You can return multiple values by using comma
separated values:

def :
print('Hello ' + name + '!")
return name, 'Roger',

In this case calling hello('Syd') the return value is a
tuple containing those 3 values: ('Syd', 'Roger', 8) .

Objects

Everything in Python is an object.

Even values of basic primitive types (integer, string,
float..) are objects. Lists are objects, tuples,
dictionaries, everything.

Objects have attributes and methods that can be
accessed using the dot syntax.

For example, try defining a new variable of type int :

age =

age now has access to the properties and methods
defined for all int objects.

This includes, for example, access to the real and

imaginary part of that number:

print(age.real)
print(age.imag)

print(age.bit_length())

A variable holding a list value has access to a different
set of methods:

items = [1, 2]
items.append(3)
items.pop()

The methods depend on the type of value.

The id() global function provided by Python lets you
inspect the location in memory for a particular object.

id(age) # 140170065725376

Your memory value will change, | am only
showing it as an example

If you assign a different value to the variable, its
address will change, because the content of the
variable has been replaced with another value stored
in another location in memory:

age =

print(id(age)) # 140535918671808

age =

print(id(age)) # 140535918671840

But if you modify the object using its methods, the
address stays the same:

items = [1, 2]

print(id(items)) # 140093713593920

items.append(3)

print(items) # [1, 2, 3]
print(id(items)) # 140093713593920

The address only changes if you reassign a variable to
another value.

Some objects are mutable, some are immutable. This
depends on the object itself. If the object provides
methods to change its content, then it's mutable.
Otherwise it's immutable. Most types defined by
Python are immutable. For example an int s
immutable. There are no methods to change its value.
If you increment the value using

age
age

age +

age +=

and you check with id(age) you will find that age
points to a different memory location. The original
value has not mutated, we switched to another value.

Loops

Loops are one essential part of programming.

In Python we have 2 kinds of loops: while loops and

for loops.

while loops

while loops are defined using the while keyword,
and they repeat their block until the condition is

evaluated as False :

condition = True
while condition == True:
print("The condition is True")

This is an infinite loop. It never ends.

Let's halt the loop right after the first iteration:

condition = True
while condition == True:
print("The condition is True")

condition = False

print("After the loop")

In this case, the first iteration is ran, as the condition
test is evaluated to True , and at the second iteration
the condition test evaluates to False , so the control
goes to the next instruction, after the loop.

It's common to have a counter to stop the iteration
after some number of cycles:

count =

while count <
print("The condition is True")
count = count +

print("After the loop")

for loops

Using for loops we can tell Python to execute a
block for a pre-determined amount of times, up front,
and without the need of a separate variable and
conditional to check its value.

For example we can iterate the items in a list:

items = [1, 2, 3, 4]
for item in items:
print(item)

Or, you can iterate a specific amount of times using
the range() function:

for item in range(04):
print(item)

range(4) creates a sequence that starts from 0 and
contains 4 items: [o, 1, 2, 3] .

To get the index, you should wrap the sequence into
the enumerate() function:

items = [1, 2, 3, 4]
for index, item in enumerate(items):
print(index, item)

Break and continue

Both while and for loops can be interrupted inside
the block, using two special keywords: break and

continue .

continue stops the current iteration and tells Python
to execute the next one.

break stops the loop altogether, and goes on with the
next instruction after the loop end.

The first example here prints 1, 3, 4 . The second
example prints 1 :

items = [1, 2, 3, 4]
for item in items:
if item ==
continue
print(item)

items = [1, 2, 3, 4]
for item in items:
if item ==
break

print(item)

Classes

Defining new objects in Python using
classes

In addition to using the Python-provided types, we can
declare our own classes, and from classes we can
instantiate objects.

An object is an instance of a class. A class is the type
of an object.

Define a class in this way:

class <class_name>:
my class

For example let's define a Dog class

class Dog:
the Dog class

A class can define methods:

class Dog:
the Dog class
def bark
print('WOF!")

self as the argument of the method points to
the current object instance, and must be specified
when defining a method.

We create an instance of a class, an object, using this
syntax:

roger = Dog()

Now roger is a new object of type Dog.

If you run

print(type(roger))

You will get <class '__main__.Dog'>

A special type of method, _ init_ () is called
constructor, and we can use it to initialize one or more
properties when we create a new object from that

class:
class
def
self.name = name
self.age = age
def

print('WOF!")

We use it in this way:

roger = Dog('Roger', 8)
print(roger.name)
print(roger.age)

roger.bark()

One important features of classes is inheritance.

We can create an Animal class with a method
walk() :

class
def C
print('Walking.."')

and the Dog class can inherit from Animal:

class
def C
print('WOF!")

Now creating a new object of class Dog will have the
walk() method as that's inherited from Animal :

roger = Dog()
roger.walk()
roger.bark()

Modules

Every Python file is a module.

You can import a module from other files, and that's
the base of any program of moderate complexity, as it
promotes a sensible organization and code reuse.

In the typical Python program, one file acts as the
entry point. The other files are modules and expose
functions that we can call from other files.

The file dog.py contains this code:

def -
print('WOF!")

We can import this function from another file using
import , and once we do, we can reference the
function using the dot notation, dog.bark() :

import dog

dog.bark()

Or, we can use the from .. import syntax and call
the function directly:

from dog import bark

bark()

The first strategy allows us to load everything defined
in afile.

The second strategy lets us pick the things we need.

Those modules are specific to your program, and
importing depends on the location of the file in the
filesystem.

Suppose you put dog.py ina lib subfolder.

In that folder, you need to create an empty file named
__init__.py . This tells Python the folder contains
modules.

Now you can choose, you can import dog from 1lib :
from lib import dog

dog.bark()

or you can reference the dog module specific
function importing from 1ib.dog :

from lib.dog import bark

bark()

The Python Standard
Library

Python exposes a lot of built-in functionality through its
standard library.

The standard library is a huge collection of all sort of
utilities, ranging from math utilities to debugging to
creating graphical user interfaces.

You can find the full list of standard library modules
here: https://docs.python.org/3/library/index.html

Some of the important modules are:

o math for math utilities

« re forregular expressions

e json to work with JSSON

o datetime to work with dates

e sqglite3 to use SQLite

« os for Operating System utilities

e random for random number generation
e statistics for statistics utilities

e requests to perform HTTP network requests
e« http to create HTTP servers

e urllib to manage URLs

Let's introduce how to use a module of the standard
library. You already know how to use modules you
create, importing from other files in the program folder.

Well that's the same with modules provided by the
standard library:

https://docs.python.org/3/library/index.html

import math

math.sqrt(4)

or

from math import sqrt

sqrt(4)

We'll soon explore the most important modules
individually to understand what we can do with them.

The PEP8 Python style
guide

When you write code, you should adhere to the
conventions of the programming language you use.

If you learn the right naming and formatting
conventions right from the start, it will be easier to
read code written by other people, and people will find
your code easier to read.

Python defines its conventions in the PEP8 style
guide. PEP stands for Python Enhancement
Proposals and it's the place where all Python
language enhancements and discussions happen.
There are a lot of PEP proposals, all available at
https://www.python.org/dev/peps/.

PEPS8 is one of the first ones, and one of the most
important, too. It defines the formatting and also some
rules on how to write Python in a "pythonic" way.

You can read its full content here:
https://www.python.org/dev/peps/pep-0008/ but here's
a quick summary of the important points you can start
with:

 Indent using spaces, not tabs

Indent using 4 spaces.

Python files are encoded in UTF-8

Use maximum 80 columns for your code
Write each statement on its own line

https://www.python.org/dev/peps/
https://www.python.org/dev/peps/pep-0008/

Functions, variable names and file names are
lowercase, with underscores between words
(snake_case)

Class names are capitalized, separate words are
written with the capital letter too, (CamelCase)
Package names are lowercase and do not have
underscores between words

Variables that should not change (constants) are
written in uppercase

Variable names should be meaningful

Add useful comments, but avoid obvious
comments

Add spaces around operators

Do not use unnecessary whitespace

Add a blank line before a function

Add a blank line between methods in a class
Inside functions/methods, blank lines can be used
to separate related blocks of code to help
readability

Debugging

Debugging is one of the best skills you can learn, as it
will help you in many difficult situations.

Every language has its debugger. Python has pdb ,
available through the standard library.

You debug by adding one breakpoint into your code:

breakpoint()

You can add more breakpoints if needed.

When the Python interpreter hits a breakpoint in your
code, it will stop, and it will tell you what is the next
instruction it will run.

Then and you can do a few things.

You can type the name of any variable to inspect its
value.

You can press n to step to the next line in the current
function. If the code calls functions, the debugger does
not get into them, and consider them "black boxes".

You can press s to step to the next line in the current
function. If the next line is a function, the debugger
goes into that, and you can then run one instruction of
that function at a time.

You can press c¢ to continue the execution of the
program normally, without the need to do it step-by-
step.

You can press q to stop the execution of the
program.

Debugging is useful to evaluate the result of an
instruction, and it's especially good to know how to
use it when you have complex iterations or algorithms
that you want to fix.

Variables scope

When you declare a variable, that variable is visible in

parts of your program, depending on where you
declare it.

If you declare it outside of any function, the variable is
visible to any code running after the declaration,
including functions:

age =

def :
print(age)

print(age)
test()
We call it a global variable.

If you define a variable inside a function, that variable
is a local variable, and it is only visible inside that
function. Outside the function, it is not reachable:

def
age =
print(age)
test()

print(age)

Accept arguments from
the command line

Python offers several ways to handle arguments
passed when we invoke the program from the
command line.

So far you've run programs either from a REPL, or
using

python <filename>.py

You can pass additional arguments and options when
you do so, like this:

python <filename>.py <argumentl>
python <filename>.py <argumentl> <argument2>

A basic way to handle those arguments is to use the
sys module from the standard library.

You can get the arguments passed in the sys.argv
list:

import sys
print(len(sys.argv))
print(sys.argv)

The sys.argv list contains as the first item the name
of the file that was ran, e.g. ['main.py'] .

This is a simple way, but you have to do a lot of work.
You need to validate arguments, make sure their type
is correct, you need to print feedback to the user if
they are not using the program correctly.

Python provides another package in the standard
library to help you: argparse .

First you import argparse and you call
argparse.ArgumentParser() , passing the description of
your program:

import argparse

parser = argparse.ArgumentParser(
description='This program prints the name of my

Then you proceed to add arguments you want to
accept. For example in this program we accept a -c

option to pass a color, like this: python program.py -c
red

import argparse
parser = argparse.ArgumentParser(

description='This program prints a color HEX va
parser.add_argument('-c', '--color', metavar='color
args = parser.parse_args()

print(args.color)

If the argument is not specified, the program raises an
error:

-» python python program.py
usage: program.py [-h] -c color
program.py: error: the following arguments are requ

You can set an option to have a specific set of values,
using choices :

parser.add_argument('-c', '—--color', metavar='color

-» python python program.py —-c blue
usage: program.py [-h] -c color
program.py: error: argument -c/--color: invalid cho:

There are more options, but those are the basics.

And there are community packages that provide this
functionality, too, like Click and Python Prompt Toolkit.

https://click.palletsprojects.com/en/7.x/
https://python-prompt-toolkit.readthedocs.io/en/master/index.html

Lambda functions

Lambda functions (also called anonymous functions)
are tiny functions that have no name and only have
one expression as their body.

In Python they are defined using the 1lambda keyword:

lambda <arguments> : <expression>

The body must be a single expression. Expression,
not a statement.

This difference is important. An expression returns
a value, a statement does not.

The simplest example of a lambda function is a
function that doubles that value of a number:

lambda num : num

Lambda functions can accept more arguments:

lambda a, b : a x b

Lambda functions cannot be invoked directly, but you
can assign them to variables:

multiply = lambda a, b : a *x b

print(multiply(2, 2))

The utility of lambda functions comes when combined
with other Python functionality, for example in
combination with map() , filter() and reduce() .

Recursion

A function in Python can call itself. That's what
recursion is. And it can be pretty useful in many
scenarios.

The common way to explain recursion is by using the
factorial calculation.

The factorial of a number is the number n mutiplied
by n-1 , multiplied by n-2 ... and so on, until
reaching the number 1 :

3 =3 %x2%x1=26
4) = 4 x 3 x 2 x 1 =24
5! =5 %4 %x 3 x2 %1 =120

Using recursion we can write a function that calculates
the factorial of any number:

def
if n == 1: return
return n x factorial(n-1)

print(factorial(3))
print(factorial(4))
print(factorial(5))

If inside the factorial() function you call

factorial(n) instead of factorial(n-1) , you are
going to cause an infinite recursion. Python by default
will halt recursions at 1000 calls, and when this limit is
reached, you will get a RecursionError error.

Recursion is helpful in many places, and it helps us
simplify our code when there's no other optimal way to
do it, so it's good to know this technique.

Nested functions

Functions in Python can be nested inside other
functions.

A function defined inside a function is visible only
inside that function.

This is useful to create utilities that are useful to a
function, but not useful outside of it.

You might ask: why should | be "hiding" this function, if
it does not harm?

One, because it's always best to hide functionality
that's local to a function, and not useful elsewhere.

Also, because we can make use of closures (more on
this later).

Here is an example:

def
def :
print(word)

words = phrase.split(' ')
for word in words:
say(word)

talk('I am going to buy the milk')

If you want to access a variable defined in the outer
function from the inner function, you first need to
declare itas nonlocal :

def
count =

def :
nonlocal count
count = count +
print(count)

increment()

count()

This is useful especially with closures, as we'll see
later.

Closures

If you return a nested function from a function, that
nested function has access to the variables defined in
that function, even if that function is not active any
more.

Here is a simple counter example.

def
count =

def :
nonlocal count
count = count +
return count

return increment
increment = counter()
print(increment())

print(increment())
print(increment())

We return the increment() inner function, and that
has still access to the state of the count variable
even though the counter() function has ended.

Decorators

Decorators are a way to change, enhance or alter in
any way how a function works.

Decorators are defined with the @ symbol followed
by the decorator name, just before the function
definition.

Example:

@logtime
def :
print('hello!")

This hello function has the 1logtime decorator
assigned.

Whenever we call hello() , the decorator is going to
be called.

A decorator is a function that takes a function as a
parameter, wraps the function in an inner function that
performs the job it has to do, and returns that inner
function. In other words:

def
def

val = func()

return val
return wrapper

Docstrings

Documentation is hugely important, not just to
communicate to other people what is the goal of a
function/class/method/module, but also to yourself.

When you'll come back to your code 6 or 12 months
from now, you might not remember all the knowledge
you are holding in your head, and reading your code
and understanding what it is supposed to do, will be
much more difficult.

Comments are one way to do so:

num =

Another way is to use docstrings.

The utility of docstrings is that they follow conventions
and as such they can be processed automatically.

This is how you define a docstring for a function:

def
"""Tncrement a number"""
return n +

This is how you define a docstring for a class and a
method:

class Dog:
""MA class representing a dog
def __init__ (self, name, age):
"""Tnitialize a new dog"""
self.name = name
self.age = age

def bark(self):
"""l et the dog bark"""
print('WOF!")

Document a module by placing a docstring at the top
of the file, for example supposing this is dog.py :

"""Dog module
This module does ... bla bla bla and provides the f«

- Dog

class Dog:
""MA class representing a dog
def __init__ (self, name, age):
"""Tnitialize a new dog"""
self.name = name
self.age = age

def bark(self):

"""l et the dog bark"""
print('WOF!")

Docstrings can span over multiple lines:

def increment
"""Tncrement
a number

return n +

Python will process those and you can use the
help() global function to get the documentation for a
class/method/function/module.

For example calling help(increment) will give you
this:

Help on function increment in module
__main__:

increment(n)
Increment
a number

There are many different standards to format
docstrings, and you can choose to adhere to your
favorite one.

I like Google's standard:
https://github.com/google/styleguide/blob/gh-
pages/pyguide.md#38-comments-and-docstrings

Standard allows to have tools to extract docstrings
and automatically generate documentation for your
code.

https://github.com/google/styleguide/blob/gh-pages/pyguide.md#38-comments-and-docstrings

Introspection

Functions, variables and objects can be analyzed
using introspection.

First, using the help() global function we can get the
documentation if provided in form of docstrings.

Then, you can use print() to get information about a
function:

def
return n +

print(increment)

or an object:

class

def :
print('WOF!")
roger = Dog()

print(roger)

The type() function gives us the type of an object:

print(type(increment))
<class 'function'>

print(type(roger))

<class '__main__.Dog'>

print(type(1))
<class 'int'>

print(type('test'))
<class 'str'>

The dir() global function lets us find out all the
methods and attributes of an object:

print(dir(roger))

[' class ', ' delattr_ ', ' dict ', ' dir

The 1id() global function shows us the location in
memory of any object:

print(id(roger)) # 140227518093024
print(id(1)) # 140227521172384

It can be useful to check if two variables point to the
same object.

The inspect standard library module gives us more
tools to get information about objects, and you can
check it out here:
https://docs.python.org/3/library/inspect.html

https://docs.python.org/3/library/inspect.html

Annotations

Python is dynamically typed. We do not have to
specify the type of a variable or function parameter, or
a function return value.

Annotations allow us to (optionally) do that.

This is a function without annotations:

def
return n +

This is the same function with annotations:

def -> int:
return n +

You can also annotate variables:

count: int =

Python will ignore those annotations. A separate tool
called mypy can be run standalone, or integrated by
IDE like VS Code or PyCharm to automatically check
for type errors statically, while you are coding, and it
will help you catch type mismatch bugs before even
running the code.

A great help especially when your software becomes
large and you need to refactor your code.

http://mypy-lang.org/

Exceptions

It's important to have a way to handle errors.
Python gives us exception handling.

If you wrap lines of code into a try: block:

try:

If an error occurs, Python will alert you and you can
determine which kind of error occurred using a
except blocks:

try:
except <ERROR1>:

except <ERROR2>:

To catch all exceptions you can use except Wwithout
any error type:

try:
except <ERROR1>:

except:

The else block is ran if no exceptions were found:

try:
some lines of code
except <ERROR1>:
handler <ERROR1>
except <ERROR2>:
handler <ERROR2>
else:
no exceptions were raised, the code ran succe:

A finally block lets you perform some operation in
any case, regardless if an error occurred or not

try:
some lines of code
except <ERROR1>:
handler <ERROR1>
except <ERROR2>:
handler <ERROR2>
else:
no exceptions were raised, the code ran succe:
finally:
do something in any case

The specific error that's going to occur depends on the
operation you're performing.

For example if you are reading a file, you might get an

EOFError . If you divide a number by zero you will get
a ZerobivisionError . If you have a type conversion
issue you might geta TypeError .

Try this code:

result = 2 /
print(result)

The program will terminate with an error

Traceback (most recent call last):
File "main.py", line 1, in <module>
result =2/ 0
ZeroDivisionError: division by zero

and the lines of code after the error will not be
executed.

Adding that operation in a try: block lets us recover
gracefully and move on with the program:

try:
result = 2 /
except ZeroDivisionError:
print('Cannot divide by zero!')
finally:
result =

print(result)

You can raise exceptions in your own code, too, using
the raise statement:

raise Exception('An error occurred!"')

This raises a general exception, and you can intercept
it using:

try:

raise Exception('An error occurred!')
except Exception as error:

print(error)

You can also define your own exception class,
extending from Exception:

class DogNotFoundException(Exception):
pass

pass here means "nothing" and we must use it
when we define a class without methods, or a
function without code, too.

try:
raise DogNotFoundException()
except DogNotFoundException:
print('Dog not found!"')

104

The with statement

The with statement is very helpful to simplify
working with exception handling.

For example when working with files, each time we
open a file, we must remember to close it.

with makes this process transparent.

Instead of writing:

filename = '/Users/flavio/test.txt'

try:
file = open(filename, 'r')
content = file.read()
print(content)

finally:
file.close()

You can write:

filename = '/Users/flavio/test.txt'

with open(filename, 'r') as file:
content = file.read()
print(content)

In other words we have built-in implicit exception
handling, as close() will be called automatically for
us.

with is not just helpful to work with files. The above
example is just meant to introduce its capabilities.

Installing 3rd party
packages using pip
The Python standard library contains a huge number

of utilities that simplify our Python development needs,
but nothing can satisfy everything.

That's why individuals and companies create
packages, and make them available as open source
software for the entire community.

Those modules are all collected in a single place, the
Python Package Index available at https://pypi.org,
and they can be installed on your system using pip .

There are more than 270.000 packages freely
available, at the time of writing.

You should have pip already installed if you
followed the Python installation instructions.

Install any package using the command pip install :

pip install <package>

or, if you do have troubles, you can also run it through

python -m :

python -m pip install <package>

For example you can install the requests package, a
popular HTTP library:

https://pypi.org/
https://pypi.org/project/requests/

pip install requests

and once you do, it will be available for all your Python
scripts, because packages are installed globally.

The exact location depends on your operating system.

On macOS, running Python 3.9, the location is
/Library/Frameworks/Python. framework/Versions/3.9/11i

b/python3.9/site-packages .

Upgrade a package to its latest version using:

pip install -U <package>

Install a specific version of a package using:

pip install <package>==<version>

Uninstall a package using:

pip uninstall <package>

Show an installed package details, including version,
documentation website and author information using:

pip show <package>

List comprehensions

List comprehensions are a way to create lists in a very
concise way.

Suppose you have a list:

numbers = [1, 2, 3, 4, 5]

You can create a new list using a list comprehension,
composed by the numbers list elements, power 2:

numbers_power_2 = [nxx2 for n in numbers]

List comprehensions are a syntax that's sometimes
preferred over loops, as it's more readable when the
operation can be written on a single line:

numbers_power_2 = []
for n in numbers:
numbers_power_2.append(nkx2)

and over map() :

numbers_power_2 = list(map(lambda n : nxx2, numbers

Polymorphism

Polymorphism generalizes a functionality so it can
work on different types. It's an important concept in
object-oriented programming.

We can define the same method on different classes:

class
def :
print('Eating dog food')

class
def :
print('Eating cat food')

Then we can generate objects and we can call the
eat() method regardless of the class the object
belongs to, and we'll get different results:

Dog()
Cat()

animall
animal2

animall.eat()
animal2.eat()

We built a generalized interface and we now do not
need to know that an animal is a Cat or a Dog.

Operator Overloading

Operator overloading is an advanced technique we
can use to make classes comparable and to make
them work with Python operators.

Let's take a class Dog:

class
def

self.name = name
self.age = age

Let's create 2 Dog objects:

roger = Dog('Roger', 8)
syd = Dog('Syd', 7)

We can use operator overloading to add a way to
compare those 2 objects, based on the age property:

class
def
self.name = name
self.age = age
def

return True if self.age > other.age else Fa

Now if you try running print(roger > syd) you will get
the result True .

In the same way we defined __gt_ () (which means
greater than), we can define the following methods:

__eq__() to check for equality

lt() to check if an object should be
considered lower than another with the <
operator
__le_ () forlowerorequal (<=)

_ge__() for greater or equal (>=)

_ne__() fornotequal(!=)

Then you have methods to interoperate with arithmetic

operations:

__add__() respond tothe + operator

__sub__() respond tothe - operator
_mul__() respond tothe x operator
__truediv__() respond to the / operator
__floordiv__() respond to the // operator
_mod__() respond tothe % operator
__pow__() respond tothe xx operator

__rshift_ () respond to the >> operator
__lshift__() respond to the << operator

_and__() respond tothe & operator
_or__() respondtothe | operator
_xor__() respond tothe ~ operator

There are a few more methods to work with other

operators, but you got the idea.

Virtual Environments

It's common to have multiple Python applications
running on your system.

When applications require the same module, at some
point you will reach a tricky situation where an app
needs a version of a module, and another app a
different version of that same module.

To solve this, you use virtual environments.

We'll use venv . Other tools work similarly, like

pipenv .

Create a virtual environment using

python -m venv .venv

in the folder where you want to start the project, or
where you already have an existing project.

Then run

.venv/bin/activate

Use source .venv/bin/activate.fish on the Fish
shell

Executing the program will activate the Python virtual
environment. Depending on your configuration you
might also see your terminal prompt change.

Mine changed from

-» folder
to
(.venv) -» folder

Now running pip Wwill use this virtual environment
instead of the global environment.

Conclusion

Thanks a lot for reading this book.
| hope it will inspire you to know more about Python.

For more on Python and programming in general,
check out my blog flaviocopes.com.

Send any feedback, errata or opinions at
flavio@flaviocopes.com

https://flaviocopes.com/
mailto:flavio@flaviocopes.com

	Introduction
	Introduction to Python
	Installing Python
	Running Python programs
	Python 2 vs Python 3
	The basics of working with Python
	Data types
	Operators
	The Ternary Operator
	Strings
	Booleans
	Numbers
	Constants
	Enums
	User Input
	Control statements
	Lists
	Tuples
	Dictionaries
	Sets
	Functions
	Objects
	Loops
	Classes
	Modules
	The Python Standard Library
	The PEP8 Python style guide
	Debugging
	Variables scope
	Accept arguments from the command line
	Lambda functions
	Recursion
	Nested functions
	Closures
	Decorators
	Docstrings
	Introspection
	Annotations
	Exceptions
	The with statement
	Installing 3rd party packages using pip
	List comprehensions
	Polymorphism
	Operator Overloading
	Virtual Environments
	Conclusion

