The
JavaScript
Beginner's
Handbook

JS

Flavio Copes

Table of Contents

Preface
Introduction to JavaScript
History

Just JavaScript
Syntax
Semicolons
Values
Variables

Types
Expressions
Operators
Precedence
Comparisons
Conditionals
Strings

Arrays

Loops
Functions
Arrow Functions
Objects

Object properties
Object methods
Classes

Inheritance

Asynchonous Programming and Callbacks
Promises

Async and Await

Variables scope

Conclusion

Preface

The JavaScript Beginner's Handbook follows the
80/20 rule: learn in 20% of the time the 80% of a topic.

| find this approach gives a well-rounded overview.

This book does not try to cover everything under the
sun related to JavaScript. It focuses on the core of the
language, trying to simplify the more complex topics.

| hope the contents of this book will help you achieve
what you want: learn the basics of JavaScript.

This book is written by Flavio. | publish web
development tutorials every day on my website
flaviocopes.com.

You can reach me on Twitter @flaviocopes.

Enjoy!

https://flaviocopes.com/
https://twitter.com/flaviocopes

Introduction to
JavaScript

JavaScript is one of the most popular programming
languages in the world.

| believe it's a great language to be your first
programming language ever.

We mainly use JavaScript to create

» websites
« web applications
« server-side applications using Node.js

but JavaScript is not limited to these things, and it can
also be used to

« create mobile applications using tools like React
Native

« create programs for microcontrollers and the
internet of things

 create smartwatch applications

It can basically do anything. It's so popular that
everything new that shows up is going to have some
kind of JavaScript integration at some point.

JavaScript is a programming language that is:

 high level: it provides abstractions that allow you
to ignore the details of the machine where it's
running on. It manages memory automatically
with a garbage collector, so you can focus on the
code instead of managing memory like other

languages like C would need, and provides many
constructs which allow you to deal with highly
powerful variables and objects.

dynamic: opposed to static programming
languages, a dynamic language executes at
runtime many of the things that a static language
does at compile time. This has pros and cons,
and it gives us powerful features like dynamic
typing, late binding, reflection, functional
programming, object runtime alteration, closures
and much more. Don't worry if those things are
unknown to you - you'll know all of those at the
end of the course.

dynamically typed: a variable does not enforce a
type. You can reassign any type to a variable, for
example, assigning an integer to a variable that
holds a string.

loosely typed: as opposed to strong typing,
loosely (or weakly) typed languages do not
enforce the type of an object, allowing more
flexibility but denying us type safety and type
checking (something that TypeScript - which
builds on top of JavaScript - provides)
interpreted: it's commonly known as an
interpreted language, which means that it does
not need a compilation stage before a program
can run, as opposed to C, Java or Go for
example. In practice, browsers do compile
JavaScript before executing it, for performance
reasons, but this is transparent to you: there is no
additional step involved.

multi-paradigm: the language does not enforce
any particular programming paradigm, unlike Java

for example, which forces the use of object-
oriented programming, or C that forces imperative
programming. You can write JavaScript using an
object-oriented paradigm, using prototypes and
the new (as of ESG) classes syntax. You can write
JavaScript in a functional programming style, with
its first-class functions, or even in an imperative
style (C-like).

In case you're wondering, JavaScript has nothing to
do with Java, it's a poor name choice but we have to
live with it.

History

Created in 1995, JavaScript has gone a very long way
since its humble beginnings.

It was the first scripting language that was supported
natively by web browsers, and thanks to this it gained
a competitive advantage over any other language and
today it's still the only scripting language that we can
use to build Web Applications.

Other languages exist, but all must compile to
JavaScript - or more recently to WebAssembly, but
this is another story.

In the beginnings, JavaScript was not nearly powerful
as it is today, and it was mainly used for fancy
animations and the marvel known at the time as
Dynamic HTML.

With the growing needs that the web platform
demanded (and continues to demand), JavaScript had
the responsibility to grow as well, to accommodate the
needs of one of the most widely used ecosystems of
the world.

JavaScript is now widely used also outside of the
browser. The rise of Node.js in the last few years
unlocked backend development, once the domain of
Java, Ruby, Python, PHP and more traditional server-
side languages.

JavaScript is now also the Ilanguage powering
databases and many more applications, and it's even
possible to develop embedded applications, mobile
apps, TV sets apps and much more. What started as a
tiny language inside the browser is now the most
popular language in the world.

Just JavaScript

Sometimes it's hard to separate JavaScript from the
features of the environment it is used in.

For example, the console.log() line you can find in
many code examples is not JavaScript. Instead, it's
part of the vast library of APIs provided to us in the
browser. In the same way, on the server it can be
sometimes hard to separate the JavaScript language
features from the APIs provided by Node.js.

Is a particular feature provided by React or Vue? Or is
it "plain JavaScript", or "vanilla JavaScript" as often
called?

In this book | talk about JavaScript, the language.

Without complicating your learning process with things
that are outside of it, and provided by external
ecosystems.

Syntax

In this little introduction | want to tell you about 5
concepts:

white space

case sensitivity
literals

identifiers

White space

JavaScript does not consider white space meaningful.
Spaces and line breaks can be added in any fashion
you might like, even though this is in theory.

In practice, you will most likely keep a well defined
style and adhere to what people commonly use, and
enforce this using a linter or a style tool such as
Prettier.

For example, | like to always 2 characters to indent.

Case sensitive

JavaScript is case sensitive. A variable named
something is different from Something .

The same goes for any identifier.

Literals

We define as literal a value that is written in the
source code, for example, a number, a string, a
boolean or also more advanced constructs, like Object
Literals or Array Literals:

'Test'

[Ial’ |b|]
{color: 'red', shape: 'Rectangle'}

Identifiers

An identifier is a sequence of characters that can be
used to identify a variable, a function, an object. It can
start with a letter, the dollar sign ¢ or an underscore
_ , and it can contain digits. Using Unicode, a letter
can be any allowed char, for example, an emoji & .

Test
test
TEST
_test
Testl
$test

The dollar sign is commonly used to reference DOM
elements.

Some names are reserved for JavaScript internal use,
and we can't use them as identifiers.

Comments

Comments are one of the most important part of any
program. In any programming language.

In JavaScript, we can write a comment on a single line
using // . Everything after // is not considered as
code by the JavaScript interpreter.

Like this:

Another type of comment is a multi-line comment. It
starts with /x and ends with %/ .

Everything in between is not considered as code:

Semicolons

Every line in a JavaScript program is optionally
terminated using semicolons.

| said optionally, because the JavaScript interpreter is
smart enough to introduce semicolons for you.

In most cases, you can omit semicolons altogether
from your programs.

This fact is very controversial, and you'll always find
code that uses semicolons and code that does not.

My personal preference is to always avoid semicolons
unless strictly necessary.

Values

A hello string is a value. A number like 12 is a
value.

hello and 12 are values. string and number are
the types of those values.

The type is the kind of value, its category. We have
many different types in JavaScript, and we'll talk about
them in detail later on. Each type has its own
characteristics.

When we need to have a reference to a value, we
assign it to a variable. The variable can have a name,
and the value is what's stored in a variable, so we can
later access that value through the variable name.

Variables

A variable is a value assigned to an identifier, so you
can reference and use it later in the program.

This is because JavaScript is loosely typed, a
concept you'll frequently hear about.

A variable must be declared before you can use it.

We have 2 main ways to declare variables. The first is
to use const :

const a =

The second way is to use let :

let a =

What's the difference?

const defines a constant reference to a value. This
means the reference cannot be changed. You cannot
reassign a new value to it.

Using 1let you can assign a new value to it.

For example, you cannot do this:

const a =
a =

Because you'll get an error: TypeError: Assignment to

constant variable. .

On the other hand, you can do it using 1let :

let a =
a =

const does not mean "constant" in the way some
other languages like C mean. In particular, it does not
mean the value cannot change - it means it cannot be
reassigned. If the variable points to an object or an
array (we'll see more about objects and arrays later)
the content of the object or the array can freely
change.

Const variables must be initialized at the declaration
time:

const a =

but 1let values can be initialized later:

let a
a =

You can declare multiple variables at once in the same
statement:

const a = 1,
letc=1,d

I o

But you cannot redeclare the same variable more than
one time:

let a
let a

or you'd get a "duplicate declaration" error.

My advice is to always use const and only use let
when you know you'll need to reassign a value to that
variable. Why? Because the less power our code has,
the better. If we know a value cannot be reassigned,
it's one less source for bugs.

Now that we saw how to work with const and 1let , |
want to mention var .

Until 2015, var was the only way we could declare a
variable in JavaScript. Today, a modern codebase will
most likely just use const and 1let . There are some
fundamental differences which | detail in this post but
if you're just starting out, you might not care about.
Justuse const and let .

https://flaviocopes.com/javascript-difference-let-var/

Types

Variables in JavaScript do not have any type attached.
They are untyped.

Once you assign a value with some type to a variable,
you can later reassign the variable to host a value of
any other type, without any issue.

In JavaScript we have 2 main kinds of types: primitive
types and object types.

Primitive types

Primitive types are

e numbers
o strings

e booleans
« symbols

And two special types: null and undefined .

Object types

Any value that's not of a primitive type (a string, a
number, a boolean, null or undefined) is an object.

Object types have properties and also have methods
that can act on those properties.

We'll talk more about objects later on.

Expressions

An expression is a single unit of JavaScript code that
the JavaScript engine can evaluate, and return a
value.

Expressions can vary in complexity.

We start from the very simple ones, called primary
expressions:

'something’

this

Arithmetic expressions are expressions that take a
variable and an operator (more on operators soon),
and result into a number:

i++
i —=
ix

String expressions are expressions that result into a
string:

'A ' + 'string'

Logical expressions make use of logical operators and
resolve to a boolean value:

a&&b

a |l b

More advanced expressions involve objects, functions,
and arrays, and I'll introduce them later.

Operators

Operators allow you to get two simple expressions
and combine them to form a more complex
expression.

We can classify operators based on the operands they
work with. Some operators work with 1 operand. Most
with 2 operands. Just one operator works with 3
operands.

In this first introduction to operators, we'll introduce the
operators you are most likely familar with: binary
operators.

| already introduced one when talking about variables:
the assignment operator = . You use = to assign a
value to a variable:

let b =

Let's now introduce another set of binary operators
that you already familiar with, from basic math.

The addition operator (+)

const three = +
const four = three +

The + operator also serves as string concatenation if
you use strings, so pay attention:

const three = +
three +
'"three' +

The subtraction operator (-)

const two = -

The division operator (/)

Returns the quotient of the first operator and the
second:

const result
const result

I
~N O

If you divide by zero, JavaScript does not raise any
error but returns the Infinity value (or -Infinity if
the value is negative).

The remainder operator (%)

The remainder is a very useful calculation in many use
cases:

1
o°

const result
const result

1
o°

A reminder by zero is always NaN , a special value
that means "Not a Number":

o°

The multiplication operator (*)

Multiply two numbers

The exponentiation operator (**)

Raise the first operand to the power second operand

%k
)k
)k
%k
)k

Precedence

Every complex statement with multiple operators in
the same line will introduce precedence problems.

Take this example:

leta=1%x2+5/2%

The result is 2.5, but why?

What operations are executed first, and which need to
wait?

Some operations have more precedence than the
others. The precedence rules are listed in this table:

Operator Description
x /% multiplication/dividision
+ - addition/subtraction
= assignment

Operations on the same level (ke + and -) are
executed in the order they are found, from left to right.

Following these rules, the operation above can be
solved in this way:

let a = 1 % / 2%
leta=2+5/2%
let a = + %
let a =2 +

let a =

Comparisons

After assignment and math operators, the third set of
operators | want to introduce is conditional operators.

You can use the following operators to compare two
numbers, or two strings.

Comparison operators always returns a boolean, a
value that's true or false).

Those are disequality comparison operators:

e« < means "less than"

e <= means "minus than, or equal to"
e > means "greater than"

« >= means "greater than, or equal to"

Example:

let a =
a >=

In addition to those, we have 4 equality operators.
They accept two values, and return a boolean:

o === checks for equality

o !== checks for inequality
Note that we also have == and !'= in JavaScript,
but | highly suggest to only use === and !==

because they can prevent some subtle problems.

Conditionals

With the comparison operators in place, we can talk
about conditionals.

An if statement is used to make the program take a
route, or another, depending on the result of an
expression evaluation.

This is the simplest example, which always executes:

if () {

}

on the contrary, this is never executed:

if () {

by

The conditional checks the expression you pass to it
for true or false value. If you pass a number, that
always evaluates to true unless it's 0. If you pass a
string, it always evaluates to true unless it's an empty
string. Those are general rules of casting types to a
boolean.

Did you notice the curly braces? That is called a
block, and it is used to group a list of different
statements.

A block can be put wherever you can have a single
statement. And if you have a single statement to
execute after the conditionals, you can omit the block,
and just write the statement:

if () doSomething()

But | always like to use curly braces to be more clear.

Else

You can provide a second part to the if statement:

else .

You attach a statement that is going to be executed if
the if condition is false:

Since else accepts a statement, you can nest
another if/else statement inside it:

]_f (a =) {
} else if (b ===) {
} else {

}

Strings

A string is a sequence of characters.

It can be also defined as a string literal, which is
enclosed in quotes or double quotes:

'A string’
"Another string"

| personally prefer single quotes all the time, and use
double quotes only in HTML to define attributes.

You assign a string value to a variable like this:

const name = 'Flavio'

You can determine the length of a string using the
length property of it:

'Flavio'.length
const name = 'Flavio’
name. length

This is an empty string: '' . Its length property is O:

"'.length

Two strings can be joined using the + operator:

IIA 1 + Ils.tringll

You can use the + operator to interpolate variables:

const name = 'Flavio'
"My name 1is + name

Another way to define strings is to use template
literals, defined inside backticks. They are especially
useful to make multiline strings much simpler. With
single or double quotes you can't define a multiline
string easily: you'd need to use escaping characters.

Once a template literal is opened with the backtick,
you just press enter to create a new line, with no
special characters, and it's rendered as-is:

const string = "Hey
this

string

is awesome!"”

Template literals are also great because they provide
an easy way to interpolate variables and expressions
into strings.

You do so by using the ${...} syntax:

const var = 'test'
const string = “something ${var}"

inside the ${} you can add anything, even
expressions:

30

const string = “something ${1 + 2 + 3}°
const string2 = “something
${foo() ? 'x' 'yv'}

Arrays

An array is a collection of elements.

Arrays in JavaScript are not a type on their own.
Arrays are objects.

We can initialize an empty array in these 2 different

ways:

const a
const a

[]

1
—
-

The first is using the array literal syntax. The second
uses the Array built-in function.

You can pre-fill the array using this syntax:

const a
const a

[1, 2, 3]
.of(1, 2, 3)

An array can hold any value, even value of different
types:

const a = [1, 'Flavio', ['a', 'b']]

Since we can add an array into an array, we can
create multi-dimensional arrays, which have very
useful applications (e.g. a matrix):

const matrix = [
[1, 2, 31,
[4, 5, 61,
[7, 8, 9]

]

matrix[0] [0]
matrix[2][0]

You can access any element of the array by
referencing its index, which starts from zero:

]
[1]
al2]

You can initialize a new array with a set of values
using this syntax, which first initializes an array of 12
elements, and fills each element with the @ number:

(12).fill(0)

You can get the number of elements in the array by
checking its length property:

const a = [1, 2, 3]
a.length

Note that you can set the length of the array. If you
assign a bigger number than the arrays current
capacity, nothing happens. If you assign a smaller
number, the array is cut at that position:

const a = [1, 2, 3]
a

a.length =

a

How to add an item to an
array

We can add an element at the end of an array using
the push() method:

a.push(4)

We can add an element at the beginning of an array
using the unshift() method:

a.unshift(0)
a.unshift(-2,)

How to remove an item
from an array

We can remove an item from the end of an array using
the pop() method:

a.pop()

We can remove an item from the beginning of an array
using the shift() method:

a.shift()

How to join two or more
arrays

You can join multiple arrays by using concat() :

1, 2]
[3, 4]

a.concat(b)

const a
const b
const ¢
a
b

You can also use the spread operator (...) in this
way:

1l
—

const a
const b
const ¢
C

[3, 4]
[...a, ...b]

How to find a specific item
in the array

You can use the find() method of an array:

a.find((element, index, array) => {

})

Returns the first item that returns true. Returns
undefined if the element is not found.

A commonly used syntax is:

a.find(x => x.id === my_id)

The above line will return the first element in the array
that has id === my_id .

findIndex() works similarly to find() , but returns
the index of the first item that returns true, and if not
found, it returns undefined :

a.findIndex((element, index, array) => {

})

Another method is includes() :

a.includes(value)

Returns true if a contains value .

a.includes(value, i)

Returns true if a contains value after the position

i.

Loops
Loops are one of the main control structures of

JavaScript.

With a loop we can automate and repeat indefinitely a
block of code, for how many times we want it to run.

JavaScript provides many way to iterate through
loops.

| want to focus on 3 ways:

« while loops
« for loops
o for..of loops

while

The while loop is the simplest looping structure that
JavaScript provides us.

We add a condition after the while keyword, and we
provide a block that is run until the condition evaluates

to true .
Example:
const list = ['a', 'b', 'c'l]
let 1 =
while (i < list.length) {
.log(list[il])
. log(1)
i=1+

You can interrupt a while loop using the break
keyword, like this:

while () {
if (somethingIsTrue) break

}

and if you decide that in the middle of a loop you want
to skip the current iteration, you can jump to the next
iteration using continue :

while () {
if (somethingIsTrue) continue

Very similar to while , we have do..while loops. It's
basically the same as while , except the condition is
evaluated after the code block is executed.

This means the block is always executed at least

once.
Example:
const list = ['a', 'b', 'c'l]
let 1 =
do {
.log(list[il)
. log(1)
i=1+

} while (i < list.length)

for

The second very important looping structure in
JavaScript is the for loop.

We use the for keyword and we pass a set of 3
instructions: the initialization, the condition, and the
increment part.

Example:
const list = ['a', 'b', 'c'l]
for (let i = 0; i < list.length; i++) {
.log(list[il])
. log(1)
}

Just like with while loops, you can interrupt a for
loop using break and you can fast forward to the next
iteration of a for loop using continue .

for...of

This loop is relatively recent (introduced in 2015) and
it's a simplified version of the for loop:

const list = ['a', 'b', 'c']

for (const value of list) {
. log(value)
}

Functions

In any moderately complex JavaScript program,
everything happens inside functions.

Functions are a core, essential part of JavaScript.
What is a function?
A function is a block of code, self contained.

Here's a function declaration:

function () {

by

A function can be run any times you want by invoking
it, like this:

getData()

A function can have one or more argument:

function () {

}

function () {

by

function () o

}

When we can pass an argument, we invoke the
function passing parameters:

function () {

}

getData('green', 24)
getData('black")

Note that in the second invokation | passed the
black string parameter as the color argument, but
no age . In this case, age inside the function is

undefined .

We can check if a value is not undefined using this

conditional:
function () o
if (typeof age !== 'undefined') {
}
}

typeof is a unary operator that allows us to check
the type of a variable.

You can also check in this way:

function () o
if (age) {

by
iy

although the conditional will also be true if age is
null , @ or an empty string.

You can have default values for parameters, in case
they are not passed:

function () {

You can pass any value as a parameter: numbers,
strings, booleans, arrays, objects, and also functions.

A function has a return value. By default a function
returns undefined , unless you add a return
keyword with a value:

function () {

return 'hi!’

We can assign this return value to a variable when we
invoke the function:

function () {

return 'hi!’

let result = getDatal()

result now holds a string with the the hi! value.

You can only return one value.

To return multiple values, you can return an object, or
an array, like this:

function () {
return ['Flavio’', |

let [name, age] = getData()

Functions can be defined inside other functions:

const getData = () => {
const dosomething = () => {}
dosomething()
return 'test'

The nested function cannot be called from the outside
of the enclosing function.

You can return a function from a function, too.

Arrow Functions

Arrow functions are a recent introduction to
JavaScript.

They are very often used instead of "regular"
functions, the one | described in the previous chapter.
You'll find both forms used everywhere.

Visually, they allows you to write functions with a
shorter syntax, from:

function () {
}
to
() = {
}

But.. notice that we don't have a name here.

Arrow functions are anonymous. We must assign
them to a variable.

We can assign a regular function to a variable, like
this:
let getData = function () {

by

When we do so, we can remove the name from the
function:

let getData = function() {
}
and invoke the function using the variable name:

let getData = function() {

}
getDatal()

That's the same thing we do with arrow functions:

let getData = () => {

¥
getData()

If the function body contains just a single statement,
you can omit the parentheses and write all on a single
line:

const getData = () => .log('hi!")

Parameters are passed in the parentheses:

const getData = (paraml, param2) =>
. log(paraml, param2)

If you have one (and just one) parameter, you could
omit the parentheses completely:

const getData = param => . log(param)

Arrow functions allow you to have an implicit return:
values are returned without having to use the return
keyword.

It works when there is a on-line statement in the
function body:

const getData = () => 'test'

getDatal()

Like with regular functions, we can have default
parameters:

You can have default values for parameters, in case
they are not passed:

const getData = (color = 'black',
age = 2) => {

and we can only return one value.

Arrow functions can contain other arrow function, or
also regular functions.

The are very similar, so you might ask why they were
introduced? The big difference with regular functions
is when they are used as object methods. This is
something we'll soon look into.

Objects

Any value that's not of a primitive type (a string, a
number, a boolean, a symbol, null, or undefined) is an
object.

Here's how we define an object:

const car = {

}

This is the object literal syntax, which is one of the
nicest things in JavaScript.

You can also use the new Object syntax:

const car = new ()

Another syntax is to use Object.create() :

const car = .create()

You can also initialize an object using the new
keyword before a function with a capital letter. This
function serves as a constructor for that object. In
there, we can initialize the arguments we receive as
parameters, to setup the initial state of the object:

function () {
this.brand = brand
this.model = model

by

We initialize a new object using

const myCar = new Car('Ford', 'Fiesta')
myCar.brand
myCar.model

Objects are always passed by reference.

If you assign a variable the same value of another, if
it's a primitive type like a number or a string, they are
passed by value:

Take this example:

let age =
let myAge
myAge =
age

age

const car = {
color: 'blue'

b

const anotherCar

anotherCar.color

car.color

car
'vellow'

Even arrays or functions are, under the hoods,
objects, so it's very important to understand how they
work.

Object properties

Objects have properties, which are composed by a
label associated with a value.

The value of a property can be of any type, which
means that it can be an array, a function, and it can
even be an object, as objects can nest other objects.

This is the object literal syntax we saw in the previous
chapter:

const car = {

by

We can define a color property in this way:

const car = {
color: 'blue'

by

here we have a car object with a property named
color , with value blue .

Labels can be any string, but beware special
characters: if | wanted to include a character not valid
as a variable name in the property name, | would have
had to use quotes around it:

const car = {
color: 'blue',
'the color': 'blue'

Invalid variable name characters include spaces,
hyphens, and other special characters.

As you see, when we have multiple properties, we
separate each property with a comma.

We can retrieve the value of a property using 2
different syntaxes.

The first is dot notation:

car.color

The second (which is the only one we can use for
properties with invalid names), is to use square
brackets:

car['the color']

If you access an unexisting property, you'll get the
undefined value:

car.brand

As said, objects can have nested objects as
properties:

const car = {
brand: {
name: 'Ford'

i

color: 'blue'

}

In this example, you can access the brand name using

car.brand.name

or

car['brand'] ['name']

You can set the value of a property when you define
the object.

But you can always update it later on:

const car = {
color: 'blue'

}
car.color = 'yellow'
car['color'] = 'red'

And you can also add new properties to an object:

car.model = 'Fiesta'

car.model

Given the object

const car = {
color: 'blue',
brand: 'Ford’

you can delete a property from this object using

delete car.brand

51

Object methods

| talked about functions in a previous chapter.

Functions can be assigned to a function property, and
in this case they are called methods.

In this example, the start property has a function
assigned, and we can invoke it by using the dot syntax
we used for properties, with the parentheses at the
end:

const car = {
brand: 'Ford',
model: 'Fiesta’,
start: function() {
.log('Started')
}
b

car.start()

Inside a method defined using a function() {}
syntax we have access to the object instance by
referencing this .

In the following example, we have access to the
brand and model properties values using
this.brand and this.model

const car = {
brand: 'Ford',
model: 'Fiesta',
start: function() {
. log(" Started
${this.brand} ${this.model} ")

car.start()

It's important to note this distinction between regular
functions and arrow functions: we don't have access to
this if we use an arrow function:

const car = {
brand: 'Ford',
model: 'Fiesta’,
start: () = {
. log(Started
${this.brand} ${this.model} ")

car.start()

This is because arrow functions are not bound to
the object.

This is the reason why regular functions are often
used as object methods.

Methods can accept parameters, like regular
functions:

54

const car = {
brand: 'Ford',
model: 'Fiesta',
goTo: function(destination) {
console.log(" Going to ${destination}’)

}

car.goTo('Rome")

Classes

We talked about objects, which are one of the most
interesting parts of JavaScript.

In this chapter we'll go up one level, introducing
classes.

What are classes? They are a way to define a
common pattern for multiple objects.

Let's take a person object:

const person = {
name: 'Flavio'

}

We can create a class named Person (note the
capital P , a convention when using classes), that has
a name property:

class {
name

by

Now from this class, we initialize a flavio object like
this:

const flavio = new Person()

flavio is called an instance of the Person class.

We can set the value of the name property:

flavio.name = 'Flavio’

and we can access it using

flavio.name

like we do for object properties.

Classes can hold properties, like name , and methods.

Methods are defined in this way:

class {
hello() {
return 'Hello, I am Flavio'
b
b

and we can invoke methods on an instance of the

class:
class {
hello() {
return 'Hello, I am Flavio'
¥
¥

const flavio = new Person()
flavio.hello()

There is a special method called called
constructor() that we can use to initialize the class
properties when we create a new object instance.

It works like this:

class {
constructor(name) {
this.name = name

hello() {
return 'Hello, I am

+ this.name +

Note how we use this to access the object instance.

Now we can instantiate a new object from the class,
passing a string, and when we call nhello , we'll get a
personalized message:

const flavio = new Person('flavio')
flavio.hello()

When the object is initialized, the constructor
method is called, with any parameters passed.

Normally methods are defined on the object instance,
not on the class.

You can define a method as static to allow it to be
executed on the class instead:

class {
static genericHello() {
return 'Hello'

Person.genericHello()

This is very useful, at times.

58

Inheritance

A class can extend another class, and objects

initialized using that class inherit all the methods of
both classes.

Suppose we have a class Person :

class {
hello() {
return 'Hello, I am a Person'

We can define a new class Programmer that extends

Person .

class extends {

Now if we instantiate a new object with class
Programmer , it has access to the hello() method:

const flavio = new Programmer()
flavio.hello()

Inside a child class, you can reference the parent
class calling super() :

class Programmer extends Person {
hello() {
return super.hello() +
'. I am also a programmer.'

const flavio = new Programmer()
flavio.hello()

The above program prints Hello, | am a Person. | am
also a programmer..

Asynchonous
Programming and
Callbacks

Most of the time, JavaScript code is ran
synchronously.

This means that a line of code is executed, then the
next one is executed, and so on.

Everything is as you expect, and how it works in most
programming languages.

However there are times when you cannot just wait for
a line of code to execute.

You can't just wait 2 seconds for a big file to load, and
halt the program completely.

You can't just wait for a network resource to be
downloaded, before doing something else.

JavaScript solves this problem using callbacks.

One of the simplest examples of how to use callbacks
is timers. Timers are not part of JavaScript, but they
are provided by the browser, and Node.js. Let me talk
about one of the timers we have: setTimeout() .

The setTimeout() function accepts 2 arguments: a
function, and a number. The number is the
milliseconds that must pass before the function is ran.

Example:

setTimeout(() => {

.log('inside the function')

b)

The function containing the console.log('inside the
function') line will be executed after 2 seconds.

If you add a console.log('before') prior to the
function, and console.log('after') after it:

.log('before')
setTimeout(() => {

.log('inside the function')
Ly)
.log('after')

You will see this happening in your console:

before
after
inside the function

The callback function is executed asynchronously.

This is a very common pattern when working with the
file system, the network, events, or the DOM in the
browser.

All of the things | mentioned are not "core" JavaScript,
so they are not explained in this handbook, but you'll
find lots of examples in my other handbooks available
at https://flaviocopes.com.

Here's how we can implement callbacks in our code.

https://flaviocopes.com/

We define a function that accepts a callback
parameter, which is a function.

When the code is ready to invoke the callback, we
invoke it passing the result:

const doSomething = callback => {

const result =
callback(result)
}

Code using this function would use it like this:

doSomething(result => {

. log(result)
})

Promises

Promises are an alternative way to deal with
asynchronous code.

As we saw in the previous chapter, with callbacks we'd
be passing a function to another function call, that
would be called when the function has finished
processing.

Like this:

doSomething(result => {
. log(result)
})

When the doSomething() code ends, it calls the
function received as a a parameter:

const doSomething = callback => {

const result =
callback(result)
}

The main problems with this approach is that the
callback is executed asynchronously, so we don't have
a way to do something, and then simply go on with our
function.

All our code must be nested inside the callback, and if
we have to do 2-3 callbacks we enter in what is
usually defined "callback hell" with many levels of

functions indented into other functions:

doSomething(result => {
doSomethingElse(anotherResult => {
doSomethingElseAgain(yetAnotherResult => {
.log(result)
})
})
})

Promises are one way to deal with this.

Instead of doing:

doSomething(result => {
. log(result)
1)

We call a promise-based function in this way:

doSomething()
.then(result => {
. log(result)
})

We first call the function, then we have a then()
method that is called when the function ends.

The indentation does not matter, but you'll often use
this style for clarity.

It's common to detect errors using a catch() method:

doSomething()
.then(result => {
. log(result)

1)
.catch(error => {

. log(error)
1)

Now, to be able to use this syntax, the doSomething()
function implementation must be a little bit special. It
must use the Promises API.

Instead of declaring it as a normal function:

const doSomething = () => {

}

We declare it as a promise object:

const doSomething = new ()

and we pass a function in the Promise constructor:

const doSomething = new (() = {

})

This function receives 2 parameters. The first is a
function we call to resolve the promise, the second a
function we call to reject the promise.

const doSomething = new (
(resolve, reject) => {

})

Resolving a promise means complete it successfully
(which results in calling the then() method in who
uses it).

Rejecting a promise means ending it with an error
(which results in calling the catch() method in who
uses it).

Here's how:

const doSomething = new (
(resolve, reject) => {

const success =
if (success) {
resolve('ok")
} else {
reject('this error occurred')

}

We can pass a parameter to the resolve and reject
functions, of any type we want.

Async and Await

Async functions are a higher level abstraction over
promises.

An async function returns a promise, like in this
example:

const getData = () => {

return new ((resolve, reject) => {
setTimeout(() =>
resolve('some data'),)
1)

}

Any code that want to use this function will use the
async keyword right before the function:

const data = await getData()

and doing so, any data returned by the promise is
going to be assigned to the data variable.

In our case, the data is the "some data" string.

With one particular caveat. whenever we use the
await keyword, we must do so inside a function
defined as async .

Like this:

const doSomething = async () => {
const data = await getData()
. log(data)

The Async/await duo allows us to have a cleaner code
and a simple mental model to work with asynchronous
code.

As you can see in the example above, our code looks
very simple. Compare it to code using promises, or
callback functions.

And this is a very simple example, the major benefits
will arise when the code is much more complex.

As an example, here's how you would get a JSON
resource using the Fetch API, and parse it, using
promises:

const getFirstUserData = () => {
return fetch('/users.json')
.then(response => response.json())
.then(users => users[0])

.then(user =>
fetch(" /users/${user.namel}))

.then(userResponse => response.json())

getFirstUserDatal()

And here is the same functionality provided using
await/async:

const getFirstUserData = async () => {
// get users list
const response = await fetch('/users.json')
// parse JSON
const users = await response.json()
// pick first user
const user = users[0]
// get user data
const userResponse =

await fetch(' /users/${user.name}")

// parse JSON
const userData = await user.json()
return userData

getFirstUserDatal()

Variables scope

When | introduced variables, | talked about using
const , let ,and var .

Scope is the set of variables that's visible to a part of
the program.

In JavaScript we have a global scope, block scope
and function scope.

If a variable is defined outside of a function or block,
it's attached to the global object and it has a global
scope, which mean it's available in every part of a
program.

There is a very important difference between var ,
let and const declarations.

A variable defined as var inside a function is only
visible inside that function. Similarly to a function
arguments:

A variable defined as const or 1let on the other
hand is only visible inside the block where it is
defined.

A block is a set of instructions grouped into a pair of
curly braces, like the ones we can find inside an if
statement ora for loop. And a function, too.

It's important to understand that a block does not
define a new scope for var , but it does for 1et and

const .

This has very practical implications.

Suppose you define a var variable inside an if
conditional in a function

function () {
if () {
var data = 'some data'
. log(data)
b
¥

If you call this function, you'll get some data printed to

the console.

If you try to move console.log(data) after the if , it

still works:
function () {
if () {
var data = 'some data'
¥
. log(data)
¥

But if you switch var data to 1let data :

function () {
if () {
let data = 'some data'
}
. log(data)
¥

You'll get an error: ReferenceError: data is not

defined .

This is because var is function scoped, and there's a
special thing happening here, called hoisting. In short,
the var declaration is moved to the top of the closest
function by JavaScript, before it runs the code. More
or less this is what the function looks like to JS,
internally:

function () {
var data
if () {
data = 'some data'

¥
. log(data)

This is why you can also console.log(data) at the top
of a function, even before it's declared, and you'll get
undefined as a value for that variable:

function () {
. log(data)
if () {
var data = 'some data’'
¥
}

but if you switch to 1let , you'll get an error
ReferenceError: data is not defined , because
hoisting does not happen to 1let declarations.

const follows the same rules as 1let : it's block
scoped.

It can be tricky at first, but once you realize this
difference, then you'll see why var is considered a
bad practice nhowadays compared to 1let : they do

have less moving parts, and their scope is limited to
the block, which also makes them very good as loop
variables, because they cease to exist after a loop has

ended:
function () {
for (var i = 0; i < 10; i++) {
.log(1i)
}
.log(1i)
}
doLoop()

When you exit the loop, i will be a valid variable with
value 10.

If you switch to 1let , if you try to console.log(i) will
result in an error ReferenceError: i is not defined

Conclusion

Thanks a lot for reading this book.

| hope it will inspire you to know more about
JavaScript.

For more on JavaScript, check out my blog
flaviocopes.com.

Send any feedback, errata or opinions at
hey@flaviocopes.com

https://flaviocopes.com/
mailto:hey@flaviocopes.com

	Preface
	Introduction to JavaScript
	History
	Just JavaScript
	Syntax
	Semicolons
	Values
	Variables
	Types
	Expressions
	Operators
	Precedence
	Comparisons
	Conditionals
	Strings
	Arrays
	Loops
	Functions
	Arrow Functions
	Objects
	Object properties
	Object methods
	Classes
	Inheritance
	Asynchonous Programming and Callbacks
	Promises
	Async and Await
	Variables scope
	Conclusion

